用户名: 密码: 验证码:
不同酶水解对乳脂挥发性化合物的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Hydrolysis with Different Enzymes on the Volatile Compound Profile of Milk Fat
  • 作者:李扬 ; 李妍 ; 王筠钠 ; 张列兵
  • 英文作者:LI Yang;LI Yan;WANG Yunna;ZHANG Liebing;College of Food Science and Nutritional Engineering, China Agricultural University;School of Food and Chemical Engineering, Beijing Technology and Business University;
  • 关键词:脂肪酶 ; 角质酶 ; 酸值 ; 固相微萃取 ; 挥发性化合物
  • 英文关键词:lipase;;cutinase;;acid value;;solid-phase microextraction;;volatile compounds
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:中国农业大学食品科学与营养工程学院;北京工商大学食品学院;
  • 出版日期:2018-03-23 13:45
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.591
  • 基金:国家自然科学基金面上项目(31471689);; 现代农业(奶牛)产业技术体系建设专项(CARS-36)
  • 语种:中文;
  • 页:SPKX201902001
  • 页数:5
  • CN:02
  • ISSN:11-2206/TS
  • 分类号:9-13
摘要
采用脂肪酶D、E及角质酶F、G水解3种不同的乳脂底物(黄油A、黄油B和稀奶油),测定水解前后乳脂酸值及挥发性化合物组成的变化。结果表明,脂肪酶D、E及角质酶F、G水解引起乳脂酸值的变化不同,质量分数50%的黄油A经脂肪酶E水解后酸值变化最明显,增加量大于40 mg/g。角质酶G仅发挥了极弱的水解作用,水解引起乳脂酸值的变化最小。乳脂底物经脂肪酶和角质酶水解后,挥发性化合物种类皆有明显增加。当以脂肪酶D为水解酶时,乳脂中辛酸含量最高(底物为质量分数93.3%的稀奶油时除外)。当以脂肪酶E为水解酶时,黄油A水解后丁酸、己酸、辛酸和癸酸含量相差不多,是含量最高的4种脂肪酸;黄油B水解后,其挥发性化合物中,以辛酸为主要产物;稀奶油水解后己酸含量最高。当以角质酶F为水解酶时,2种黄油水解后己酸含量最高;质量分数93.3%稀奶油水解后,己酸与辛酸是含量最多的2种脂肪酸;质量分数50%稀奶油水解后,癸酸含量最高。3种乳脂经3种不同酶水解后,挥发性化合物组成发生明显变化,丁酸、己酸、辛酸、癸酸4种游离脂肪酸含量增加。
        In this study, three different kinds of milk fat (two butters (A and B) and cream) were hydrolyzed respectively with two lipases (D and E) and two cutinases (F and G), and acid value and volatile compound profile before and after hydrolysis were compared. The results indicated that the variation of acid value after hydrolysis depended on the enzyme used. The largest increase in acid value of over 40 mg/g was observed after hydrolysis of 50% (m/m) butter A by lipase E. Cutinase G, however, very weakly hydrolyzed the milk fat and caused the smallest change in acid value. More volatile compounds were identified in hydrolyzed milk fat. Lipase D produced the highest content of octanic acid when hydrolyzing the butters and 50% (m/m) cream (except when using 93.3% (m/m) cream as substrate). After hydrolysis by lipase E, butyric acid, hexanoic acid, octanic acid and decanoic acid were the major compounds in the hydrolysate of butter A, whereas the most prominent volatile compounds in the hydrlysates of butter B and milk cream were octanic acid and hexanoic acid, respectively. After hydrolysis by cutinase F, hexanoic acid and octanic acid were the major volatile compounds in 93.3% (m/m) cream, while hexanoic acid and decanoic acid were major volatile compounds in the hydrolysates of butters and 50% (m/m) cream, respectively. The results showed that hydrolysis by lipases or cuitnases caused a significant change in the volatile compound profile of milk fat, not only producing new fatty acids, but also increasing the contents of butyric acid, hexanoic acid, octanic acid, and decanoic acid.
引文
[1]迟雪露,仝令君,潘明慧,等.乳脂肪含量对牛乳理化性质的影响[J].食品科学,2018,39(4):26-31.DOI:10.7506/spkx1002-6630-201804005.
    [2]JOOYANDEH H,KAUR A,MINHAS K S.Lipases in dairy industry:a review[J].Journal of Food Science and Technology,2009,46(3):181-189.
    [3]CHEN S,SU L,CHEN J,et al.Cutinase:characteristics,preparation,and application[J].Biotechnology Advances,2013,31(8):1754-1767.DOI:10.1016/j.biotechadv.2013.09.005.
    [4]李良,马莺,杨鑫.SPME-GC-MS测定稀奶油中的挥发性化合物[J].哈尔滨工业大学学报,2012,44(6):102-104.DOI:10.11918/j.issn.0367-6234.2012.06.023.
    [5]MALLIA S,ESCHER F,CERNY S H.Aroma-active compounds of butter:a review[J].European Food Research and Technology,2008,226(3):315-325.DOI:10.1007/s00217-006-0555-y.
    [6]SCHIEBERLE P,GASSENMEIER K,GUTH H,et al.Character impact odour compounds of different kinds of butter[J].LWT-Food Science and Technology,1993,26(4):347-356.DOI:10.1006/fstl.1993.1070.
    [7]HOLLAND R,LIU S Q,CROW V L,et al.Esterases of lactic acid bacteria and cheese flavour:milk fat hydrolysis,alcoholysis and esterification[J].International Dairy Journal,2005,15(6/7/8/9):711-718.DOI:10.1016/j.idairyj.2004.09.012.
    [8]HIROSHI K.Production of butter flavour:55-061780[P].1980-05-09[2017-11-20].
    [9]HERNANDEZ I,BARRON L J R,VIRTO M,et al.Lipolysis,proteolysis and sensory properties of ewe’s raw milk cheese(Idiazabal)made with lipase addition[J].Food Chemistry,2009,116(1):158-166.DOI:10.1016/j.foodchem.2009.02.026.
    [10]张宁,赵金利,SUSENO C,等.不同脂肪酶酶解奶油制备奶味香基的研究[J].中国油脂,2015,40(4):74-78.
    [11]周美玉,傅亮.复合酶酶解黄油制备天然奶油香精[J].食品与机械,2016,32(1):183-187.DOI:10.13652/j.issn.1003-5788.2016.01.044.
    [12]REGADO M A,CRISTOVAO B M,MOUTINHO C G,et al.Flavour development via lipolysis of milkfats changes in free fatty acid pool[J].International Journal of Food Science and Technology,2007,42(8):961-968.DOI:10.1111/j.1365-2621.2006.01317.X.
    [13]卫生部.动植物油脂酸值和酸度测定:GB/T 5530-2005[S].北京:中国标准出版社,2005.
    [14]何洋,包清彬,杨洋,等.乳脂酶酶解无水奶油制备天然奶味香精[J].西华大学学报(自然科学版),2015,34(2):98-102.DOI:10.3969/j.issn.1673-159X.2015.02.020.
    [15]黎海彬,姚正晓,刘慧娟,等.响应面法优化乳脂肪酶解的工艺[J].食品科学,2013,34(14):108-112.DOI:10.7506/spkx1002-6630-201314022.
    [16]RAYNE S,FOREST K.pH dependent partitioning behaviour of food and beverage aroma compounds between air-aqueous and organicaqueous matrices[J].Flavour and Fragrance Journal,2016,31(3):228-234.DOI:10.1002/ffj.3305.
    [17]CARRAPISO A I.Effect of fat content on flavour release from sausages[J].Food Chemistry,2007,103(2):396-403.DOI:10.1016/j.foodchem.2006.07.037.
    [18]叶国注,江用文,尹军峰,等.绿茶香气HS-SPME提取方法研究[J].中国茶叶,2009,31(10):16-19.DOI:10.3969/j.issn.1000-3150.
    [19]王蓓,曹雁平,郑福平,等.气相-嗅闻法分析奶油酶解产物中的特征风味组分[J].中国食品学报,2013,13(2):182-187.DOI:10.16429/j.1009-7848.2013.02.031.
    [20]NURSTEN H E.The flavour of milk and dairy products milk of different kinds milk power butter and cream[J].International Journal of Dairy Technology,1997,50(2):48-56.DOI:10.1111/j.1471-0307.1997.tb01735.x.
    [21]李良.乳酸乳球菌发酵稀奶油过程中甲基酮的合成代谢调控[D].哈尔滨:哈尔滨工业大学,2014:4-6.
    [22]LEE S R,MACKU C,SHIBAMOTO T.Isolation and Identification of headspace volatiles formed in heated butter[J].Journal of Agricultural and Food Chemistry,1991,39(11):1972-1975.DOI:10.1021/jf00011a017.
    [23]URBACH G,STARK W,FORSS D A.Volatile compounds in butter oil:Ⅱ.flavour and flavour thresholds of lactones,fatty acids,phenols,indole and skatole in deodorized synthetic butter[J].Journal of Dairy Research,1972,39(1):35-47.DOI:10.1017/s0022029900013820.
    [24]PETERSON D G,REINECCIUS G A.Determination of the aroma impact compounds in heated sweet cream butter[J].Flavour and Fragrance Journal,2003,18(4):320-324.DOI:10.1002/ffj.1228.
    [25]OMAR K A,GOUNGA M E,LIU R,et al.Effects of microbial lipases on hydrolyzed milk fat at different time intervals in flavour development and oxidative stability[J].Journal of Food Science and Technology,2016,53(2):1035-1046.DOI:10.1007/s13197-015-2158-8.
    [26]KURTOVIC I,MARSHALL S N,CLEAVER H L,et al.The use of immobilised digestive lipase from chinook salmon (Oncorhynchus tshawytscha) to generate flavour compounds in milk[J].Food Chemistry,2016,199:323-329.DOI:10.016/j.foodchem.2015.12.027.
    [27]姚正晓.酶法制备天然牛奶风味基料及牛奶香精的研究[D].柳州:广西科技大学,2013:47-48.
    [28]MARILLEY L.Flavours of cheese products:metabolic pathways,analytical tools and identification of producing strains[J].International Journal of Food Microbiology,2004,90(2):139-159.DOI:10.1016/s0168-1605(03)00304-0.
    [29]WANG B,XU S.Effects of different commercial lipases on the volatile profile of lipolysed milk fat[J].Favour and Fragrance Journal,2010,24(6):335-340.DOI:10.1002/ffj.1945.
    [30]ZHANG X M,AI N S,WANG J,et al.Lipase-catalyzed modification of the flavor profiles in recombined skim milk products by enriching the volatile components[J].Journal of Dairy Science,2016,99(11):8665-8679.DOI:10.3168/jds.2015-10773.
    [31]骆婕怡,汪薇,任文彬.双酶法协同美拉德反应制备天然奶香基料的工艺[J].中国乳品工业,2015,43(11):44-57.DOI:10.3969/j.issn.1001-2230.2015.11.012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700