用户名: 密码: 验证码:
阳宗海砷污染背景下浮游植物的时空分布特征及其驱动因子解析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatio-temporal characteristics of phytoplankton distribution and the identification of driving factors in the arsenic-contaminated Yangzong Lake
  • 作者:白宁静 ; 陈丽 ; 蒋伊能 ; 张涛 ; 刘术 ; 刘晓曦 ; 李天丽 ; 赵帅营 ; 陈光杰
  • 英文作者:BAI Ningjing;CHEN Li;JIANG Yineng;ZHANG Tao;LIU Shu;LIU Xiaoxi;LI Tianli;ZHAO Shuaiying;CHEN Guangjie;Provincial Key Laboratory of Plateau Geographical Processes and Environmental Change,School of Tourism and Geography,Yunnan Normal University;Institute of Hydrobiology,Chinese Academy of Sciences;
  • 关键词:阳宗海 ; 砷污染 ; 浮游植物 ; 群落结构 ; 环境因子
  • 英文关键词:Yangzong Lake;;arsenic contamination;;phytoplankton;;community structure;;environmental factor
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:云南师范大学旅游与地理科学学院高原地理过程与环境变化省重点实验室;中国科学院水生生物研究所;
  • 出版日期:2019-01-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(41461096,41771239,31460131);; 2017年中西部高等学校青年骨干教师国内访问学者项目;; 云南省应用基础研究计划项目面上项目(2018FB077)联合资助
  • 语种:中文;
  • 页:FLKX201901014
  • 页数:12
  • CN:01
  • ISSN:32-1331/P
  • 分类号:149-160
摘要
人类活动导致的重金属污染是湖泊水体面临的主要环境压力之一.云南高原湖泊阳宗海于2008年暴发了砷污染事件且水体砷浓度目前仍然超过生活饮用水卫生标准,严重影响了水安全和生态系统健康.本研究于2015年4月-2016年2月每两月对阳宗海南、中、北部湖区进行采样调查及分析,共鉴定出浮游植物7门44属68种,绿藻门种数最多.蓝藻门占绝对优势,其中伪鱼腥藻(Pseudoanabaena sp.)、浮丝藻(Planktothrix sp.)、束丝藻(Aphanizomenon sp.)为全年的优势种,这与已有调查显示的阳宗海砷污染后浮游植物群落中蓝藻占优的基本特征一致.方差分析结果表明浮游植物生物量在时间尺度上呈现显著的变化特征,最大值出现在8月(14.06 mg/L),最小值出现在12月(1.23 mg/L),而空间差异不显著. Pearson相关分析显示,浮游植物总生物量与水温、p H呈显著正相关,而与砷、透明度、锰、钠、钾和总磷浓度呈显著负相关.冗余分析结果表明,水温、砷、钙、锰、钾共同解释了阳宗海浮游植物群落结构变化的57.18%.方差分解的结果进一步表明,水温、钙离子和砷三者作用共同解释了浮游植物群落结构变化的32.05%,其中水温和钙离子分别独立解释了群落变化的12.45%和8.28%,水体砷浓度仅独立解释了2.33%,但与水温共同作用解释了9.46%.因此,我们推测水温的季节性波动导致了湖泊水体热力分层的明显变化,其中水体混合作用的增强可能会促进底泥释放过程并增加表层水体的砷浓度,进而影响了浮游植物群落的季节性变化.研究结果有利于评价重金属污染对湖泊的长期生态效应,并为砷污染湖泊的环境修复提供重要的科学依据.
        Heavy metal pollution induced by human activities is widely regarded as a major environmental stressor for many lakes.Yangzong Lake,one of the nine largest plateau lakes in Yunnan Province,has experienced severe arsenic contamination since2008. Monitoring data further showed that lake-water arsenic concentration consistently exceeded the standards for drinking water quality,posing severe risk for water safety and ecosystem health. A spatial survey and analysis of surface water quality and phytoplankton in Yangzong Lake was conducted bimonthly from April 2015 to February 2016,covering the south,central and north parts of the lake basin,respectively. A total of 68 algal taxa were identified,with the largest number of taxa belonging to Chlorophyta.However,Cyanophyta was absolutely dominant throughout the study period,and consisted of Pseudoanabaena,Planktothrix and Aphanizomenon. These results were consistent with previous surveys of phytoplankton from this lake,confirming the cyanobacteriadominated community structure after the occurrence of arsenic pollution. The analysis of variance demonstrated that the phytoplankton biomass exhibited a significant seasonal fluctuation,with a maximum value found in August( 14.06 mg/L) and a minimum biomass occurring in December( 1.23 mg/L),while no significant spatial variation was observed. The Pearson correlation analysis showed that phytoplankton total biomass was significantly and positively correlated with water temperature and pH,but negatively correlated with arsenic concentration, water transparency, manganese concentration, sodium concentration, potassium concentration and total phosphorus concentration. Redundancy analysis displayed that water temperature,arsenic concentration,calcium concentration,manganese concentration and potassium concentration altogether accounted for 57. 18% of the community variation in Yangzong Lake. The variation partitioning further showed that the water temperature,calcium concentration and arsenic concentration accounted for 32.05% of the spatio-temporal variation of phytoplankton community in Yangzong Lake,while the water temperature,calcium concentration and arsenic concentration independently accounted for 12.45%,8.28% and 2.33% of the total variance,respectively. The coupling of arsenic concentration and water temperature explained 9.46% of the community variation.Therefore,we infer that seasonal fluctuation of water temperature may have caused the change in lake stratification and the increased water mixing under lower temperature may promote the sediment release of arsenic,resulting in higher lake-water arsenic concentration and stronger community turnover of phytoplankton. This study will help to evaluate the long term ecological effect of heavy metals on lakes and provide scientific evidence for restoration of arsenic polluted plateau lakes.
引文
[1]Lui ZT,Li CH,Zhang GY.Application of principal component analysis to the distributions of heavy metals in the water of lakes and reservoirs in Yunnan Province.Research of Environmental Sciences,2010,23(4):459-466.[刘总堂,李春海,章钢娅.运用主成分分析法研究云南湖库水体中重金属分布.环境科学研究,2010,23(4):459-466.]
    [2]Xing W,Bai G,Wu H et al.Effect of submerged macrophytes on metal and metalloid concentrations in sediments and water of the Yunnan Plateau lakes in China.Journal of Soils&Sediments,2017,17(10):1-10.
    [3]Klein DH.Fluxes,residence times,and sources of some elements to Lake Michigan.Water Air&Soil Pollution,1975,4(1):3-8.
    [4]Knauer K,Behra R,Hemond H.Toxicity of inorganic and methylated arsenic to algal communities from lakes along an arsenic contamination gradient.Aquatic Toxicology,1999,46(3/4):221-230.
    [5]Zhang YX,Xiang XP,Zhang Y et al.Distribution and Sources in Yangzonghai Lake,China.Environmental Science,2012,33(11):3768-3777.[张玉玺,向小平,张英等.云南阳宗海砷的分布与来源.环境科学,2012,33(11):3768-3777.]
    [6]Wang ZH,He B,Pan XJ et al.Levels,trends and risk assessment of arsenic pollution in Yangzonghai Lake,Yunnan Province,China.Science China Chemistry,2010,53(8):1809-1817.
    [7]Tao JS,Chen GJ,Chen XL et al.Long-term pattern of diatom community responses to water pollution and hydrological regulation in Yangzong Lake.Geographical Research,2016,35(10):1899-1911.[陶建霜,陈光杰,陈小林等.阳宗海硅藻群落对水体污染和水文调控的长期响应模式.地理研究,2016,35(10):1899-1911.]
    [8]Reynolds CS ed.The ecology of freshwater phytoplankton.Cambridge:Cambridge University Press,2006.
    [9]Lu N,Yin HB,Deng JC et al.Spring community structure of phytoplankton from Lake Chaohu and its relationship to environmental Factors.J Lake Sci,2010,22(6):950-956.DOI:10.18307/2010.0620.[路娜,尹洪斌,邓建材等.巢湖流域春季浮游植物群落结构特征及其与环境因子的关系.湖泊科学,2010,22(6):950-956.]
    [10]Suikkanen S,Laamanen M,Huttunen M.Long-term changes in summer phytoplankton communities of the open northern Baltic Sea.Estuarine Coastal&Shelf Science,2007,71(3/4):580-592.
    [11]Sanders J,Cibik.Adaptive behavior of euryhaline phytoplankton communities to arsenic stress.Marine Ecology Progress,1985,22:199-205.
    [12]Wangberg S,Heyman U,Blanck H.Long-term and short-term arsenate toxicity to freshwater phytoplankton.Canadian Journal of Fisheries&Aquatic Sciences,1991,48(2):173-182.
    [13]Sanders JG.Direct and indirect effects of arsenic on the survival and fecundity of estuarine zooplankton.Canadian Journal of Fisheries&Aquatic Sciences,1986,43(3):694-699.
    [14]Chen GJ,Shi HB,Tao JS et al.Industrial arsenic contamination causes catastrophic changes in freshwater ecosystems.Scientific Reports,2015,5:17419.
    [15]Li SH,Yu MJ,Li GZ et al.Limnological survey of the lakes of Yunnan Plateau.Oceanologia et Limnologia sinica,1963,5(2):87-114.[黎尚豪,俞敏娟,李光正等.云南高原湖泊调查.海洋与湖沼,1963,5(2):87-114.]
    [16]Li YP,Yan X.Changes of phytoplankton biomass of Yangzonghai Lake from 2005 to 2007.Environmental Science Survey,2015,(s1):8-10.[李娅萍,颜翔.2005-2007年阳宗海浮游植物生物量变化特征分析.环境科学导刊,2015,(s1):8-10.]
    [17]Xu YM.Arsenic concentration and phytoplankton change in Lake Yangzong.Environmental Science Survey,2013,32(5):62-64.[徐永梅.阳宗海砷浓度与浮游植物的变化分析.环境科学导刊,2013,32(5):62-64.]
    [18]Li CY,Yang ZL.Phytoplankton community and nutritional status evaluation in Yangzonghai Lake.Pearl River,2013,3(6):20-23.[李春永,杨中兰.阳宗海浮游植物群落与营养状态评价.人民珠江,2013,3(6):20-23.]
    [19]Xie YH,Li CY,Yang ZL.Research on plankton community structure of Yangzonghai Lake.Water Resources Protection,2015,31(4):47-51.[谢永红,李春永,杨中兰.阳宗海浮游生物群落结构研究.水资源保护,2015,31(4):47-51.]
    [20]Wang SM,Dou HS eds.Records of lakes in China.Beijing:Science Press,1998.[王苏民,窦鸿身.中国湖泊志.北京:科学出版社,1998.]
    [21]Yuan LN,Yang CL,Li XM et al.Effect of daily thermal stratification on dissolved oxygen,pH,total phosphorus concentration,phytoplankton and algae density of a deep plateau lake:A case study of Lake Yangzonghai,Yunnan Province.JLake Sci,2014,12(1):161-168.DOI:10.18307/2014.0120.[袁琳娜,杨常亮,李晓铭等.高原深水湖泊水温日成层对溶解氧、酸碱度、总磷浓度和藻类密度的影响:以云南阳总海为例.湖泊科学,2014,12(1):161-168.]
    [22]Zhu XH,Lyu SS,Zhang PP et al.Heavy metal contamination in the lacustrine sediment of a plateau lake:influences of groundwater and anthropogenic pollution.Environmental Earth Sciences,2016,75(2):1-14.
    [23]Li RF,Li XM,Xu Q et al.Identification of arsenic sources and pollution control in Yangzonghai Lake.Environmental Science Survey,2015,(5):27-31.[李发荣,李晓铭,徐琼等.阳宗海湖泊砷污染来源解析与防治.环境科学导刊,2015,(5):27-31.]
    [24]Yin HW.Arsenic Pollution in Yangzong Lake has received extensive attention.South Reviews,2009,25(4):46-49.[尹鸿伟.阳宗海砷污染迷雾不散.南风窗,2009,25(4):46-49.]
    [25]Qi JY,Xu ZC,Li XP et al.Study on source and speciation distribution characteristics of arsenic in Yangzonghai Lake waters.Journal of Anhui Agricultural Science,2010,38(20):10789-10792.[齐剑英,许振成,李祥平等.阳宗海水体中砷的形态分布特征及来源研究.安徽农业科学,2010,38(20):10789-10792.]
    [26]Ma J,Wang J.Phytoplankton collection,counting and quantitative methods.Journal of Hydroecology,1982,(4):58-63.[马骥,王建.浮游植物的采集、计数与定量方法.水生态学杂志,1982,(4):58-63.]
    [27]Hillebrand H,Dürselen C,Kirschtel D et al.Biovolume calculation for pelagic and benthic microalgae.Journal of Phycology,1999,35(2):403-424.
    [28]Editorial board of“water and wastewater monitoring and analysis method”,Ministry of Environmental Protection of the People’s Republic of China ed.Minitoring and analysis methods of water and wastewater:fourth edition.Beijing:China Envirinmental Science Press,2002:243-285.[国家环境保护局《水与废水监测分析方法》编委会.水和废水监测分析方法:第四版.北京:中国环境科学出版社,2002:243-285.]
    [29]Jiang YN,Zhang T,Chen L et al.Identification of phytoplankton community changes and environmental factors during the winter-spring transition in Fuxian Lake.Transactions of Oceanology and Limnology,2016,(6):87-98.[蒋伊能,张涛,陈丽等.抚仙湖冬-春季浮游植物群落结构变化及其影响因子识别.海洋湖沼通报,2016,(6):87-98.]
    [30]Ferrari SG,Silva PG,González DM et al.Arsenic tolerance of cyanobacterial strains with potential use in biotechnology.Revista Argentina de Microbiologia,2013,45(3):174-179.
    [31]Yang B,Dong JD,WJ et al.Allelopathy in phytoplankton.Acta Ecologica Sinica,2007,27(4):1619-1626.[杨斌,董俊德,吴军等.浮游植物的化感作用.生态学报,2007,27(4):1619-1626.]
    [32]Yao XJ,Liu DF,Yang ZJ et al.Preliminary studies on the mechanism of winter dinoflagellate bloom in Xiangxi Bay of the Three Gorges Reservoir.Research of Environmental Sciences,2012,25(6):645-651.[姚绪姣,刘德富,杨正健等.三峡水库香溪河库湾冬季甲藻水华生消机理初探.环境科学研究,2012,25(6):645-651.]
    [33]Xu Y,Cai Q,Wang L et al.Diel vertical migration of Peridiniopsis niei,Liu et al,a new species of dinoflagellates in an eutrophic bay of Three-Gorge Reservoir,China.Aquatic Ecology,2010,44(2):387-395.
    [34]Ross ON,Sharples J.Swimming for survival:A role of phytoplankton motility in a stratified turbulent environment.Journal of Marine Systems,2008,70(3/4):248-262.
    [35]Paerl HW,Huisman J.Blooms like it hot.Science,2008,320(5872):57-58.
    [36]Johnk K,Huisman J,Sharples J et al.Summer heatwaves promote blooms of harmful cyanobacteria.Global Change Biology,2008,14(3):495-512.
    [37]Rolland A,Bertrand F,Maumy M et al.Assessing phytoplankton structure and spatio-temporal dynamics in a freshwater ecosystem using a powerful multiway statistical analysis.Water Research,2009,43(13):3155.
    [38]Yang D,Gao Z,Sun P et al.Mechanism of nutrient silicon and water temperature influences on phytoplankton growth.Marine Science Bulletin,2006,8(2):49-59.
    [39]Lopes MRM,Bicudo CEDM,Ferragut MC.Short term spatial and temporal variation of phytoplankton in a shallow tropical oligotrophic reservoir,southeast Brazil.Hydrobiologia,2005,542(1):235-247.
    [40]Jin JP,Yu X,Bao YX et al.Study on the relationship between the cyanobacteria density and the previous environmental factors in the east part of the Yangcheng Lake.Urban Meteorology Forum-Urban and Environmental Meteorology,2014:324-331.[金建平,于鑫,包云轩等.阳澄湖东湖蓝藻密度与前期环境因子的关系.城市气象论坛-城市与环境气象,2014:324-331.]
    [41]Tan X,Kong FX,Yu Y et al.Effects of enhanced temperature on algae recruitment and phytoplankton community succession.China Environment Science,2009,29(6):578-582.[谭啸,孔繁翔,于洋等.升温过程对藻类复苏和群落演替的影响.中国环境科学,2009,29(6):578-582.]
    [42]Li D,Li XW,Niu ZC et al.Structure of phytoplankton community and relationship between phytoplankton community and water quality in Taihu Lake.Ecology and Environmental Sciences,2014,23(11):1814-1820.[李媂,李旭文,牛至春等.太湖浮游植物群落结构及其与水质指标间的关系.生态环境学报,2014,23(11):1814-1820.]
    [43]Sorsa KK.Culture studies on arsenic(As III,As V,MMAA)interaction with three freshwater algae(Microcystis aeruginosa,Actinastrum hantzschii and Asterionella formosa).Madison:Univ of Wisconsin Madison Wi,1983.
    [44]Wang S,Zhang D,Pan X.Effects of arsenic on growth and photosystem II(PSII)activity of Microcystis aeruginosa.Ecotoxicology&Environmental Safety,2012,84(7):104.
    [45]Gong Y,Wu XQ,Xiao BD et al.Response of Microcystis aeruginosa under different phosphate regimes.Acta Hydrobiologica Sinica,2009,33(5):890-895.[龚艳,吴幸强,肖邦定等.铜绿微囊藻在不同供磷水平下对砷胁迫的响应.水生生物学报,2009,33(5):890-895.]
    [46]Guo P,Gong Y,Wang C et al.Arsenic speciation and effect of arsenate inhibition in a Microcystis aeruginosa culture medium under different phosphate regimes.Environmental Toxicology&Chemistry,2011,30(8):1754-1759.
    [47]Gong Y,Chou HN,Tu CD et al.Effects of arsenate on the growth and microcystin production of Microcystis aeruginosa,isolated from Taiwan as influenced by extracellular phosphate.Journal of Applied Phycology,2009,21(2):225-231.
    [48]Gong Y,Song L,Wu X et al.Effects of arsenate on microcystin content and leakage of Microcystis Strain PCC7806 under various phosphate regimes.Environmental Toxicology,2009,24(1):87-94.
    [49]Li ZY.Distribution,morphology and structure of arsenic in Yangzong Lake and its stability in sediments[Dissertation].Kunming:Yunnan University,2014.[李智圆.阳宗海湖泊砷的分布、形态结构及其在沉积物中的稳定性[学位论文].昆明:云南大学,2014.]
    [50]Yang CL.Migration and transformation of arsenic in sediments of Yangzong Lake under accelerated sedimentation conditions[Dissertation].Kunming:Yunnan University,2014.[杨常亮.人为加速沉积条件下阳宗海沉积物中砷的迁移转化规律[学位论文].昆明:云南大学,2014.]
    [51]Chen XL.Research of lake diatom community and biodiversity distribution feature in Yunnan[Dissertation].Kunming:Yunnan Normal University,2015.[陈小林.云南高原湖泊硅藻群落与生物多样性的分布特征研究[学位论文].昆明:云南师范大学,2015.]
    [52]Min HL,Cai SJ,Xu QS et al.Effects of exogenous calcium on resistance of Hydrilla verticillata(L.f.)Royle to cadmium stress.Acta Ecological Sinica,2012,32(1):256-264.[闵海丽,蔡三娟,徐勤松等.外源钙对黑藻抗镉胁迫能力的影响.生态学报,2012,32(1):256-264.]
    [53]Shi J,Wu Z,Song L.Physiological and molecular responses to calcium supplementation in Microcystis aeruginosa(Cyanobacteria).New Zealand Journal of Marine&Freshwater Research,2013,47(1):51-61.
    [54]El-Zahraa F,Zaki T.Effect of boron and calcium on growth and nitrogen fixation of the blue-green alga Calothrix parietina.Folia Microbiologica,1999,44(2):201-204.
    [55]Ding L,Zhi CY.Environmental effects on diatom and its monitor of environment.Journal of Guizhou Normal University:Natural Sciences,2006,24(3):13-16.[丁蕾,支崇远.环境对硅藻的影响及硅藻对环境的监测.贵州师范大学学报:自然版,2006,24(3):13-16.]
    [57]Tao ZY,Chen WJ,Yu ZJ et al.Correlation analysis of phytoplankton community structure and environmental factors in Taibo Lake.Journal of Anhui Agricultural Sciences,2017,45(13):63-67.[陶志英,陈文静,余智杰等.太泊湖浮游植物群落结构特征及其与环境因子相关性分析.安徽农业科学,2017,45(13):63-67.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700