用户名: 密码: 验证码:
硝酸纤维素膜光降解水中对硝基苯酚的机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photolysis Mechanism of p-Nitrophenol by Nitrocellulose Membrane in Aqueous Solution
  • 作者:代志峰 ; 赵同谦 ; 阴永光 ; 佘加平 ; 武俐 ; 邰超 ; 孙静阳 ; 罗玉俊
  • 英文作者:DAI Zhi-feng;ZHAO Tong-qian;YIN Yong-guang;SHE Jia-ping;WU Li;TAI Chao;SUN Jing-yang;LUO Yu-jun;Institute of Resources and Environment,Henan Polytechnic University;State Key Laboratory of Environmental Chemistry and Ecotoxicology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences;
  • 关键词:硝酸纤维素膜 ; 对硝基苯酚(PNP) ; 光解 ; 水体成分 ; 光解产物
  • 英文关键词:nitrocellulose membrane;;p-nitrophenol(PNP);;photolysis;;water-dissolved substances;;photolytic products
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:河南理工大学资源环境学院;中国科学院生态环境研究中心环境化学与生态毒理学国家重点实验室;
  • 出版日期:2018-09-12 13:26
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金河南省联合基金重点项目(U1704241)
  • 语种:中文;
  • 页:HJKZ201902021
  • 页数:8
  • CN:02
  • ISSN:11-1895/X
  • 分类号:175-182
摘要
为研究硝酸纤维素膜(NCM)作为新型污染物降解材料在水处理领域的应用潜力,本文以对硝基苯酚为目标污染物,NCM为活性氧物种来源,考察了溶液p H、光照条件、水体成分等因素对光解的影响及其作用机制.结果表明,NCM光致·OH量子产率为1. 30×10~(-4),是传统光催化材料TiO_2的1. 86倍.纯水中对硝基苯酚的直接光解速率仅为9. 52×10-4min-1,而在NCM存在情况下光解速率达到0. 005 5 min-1.这种促进作用主要是由NCM表面光致·OH引起的,其中UVA对光解起重要作用.水体酸性条件有利于NCM光解对硝基苯酚,在p H=2. 0时,降解率达到90%以上,相应的光解速率为0. 016 5min-1.对硝基苯酚的光解速率随光照强度、膜面积的增大而提高.水体成分对光解影响呈显著差异,NO-3可通过光致·OH的生成促进光解;而可溶性有机质主要通过滤光作用抑制对硝基苯酚的光解.气相色谱-质谱分析中间产物主要有苯酚、对苯二酚、丙二酸和草酸等,由此给出了可能的光解途径.
        To investigate the potential application of nitrocellulose membrane( NCM) in water treatment,this study examined the photolysis of p-nitrophenol,with NCM as the source of reactive oxygen species. Effects of solution p H,light conditions,and water dissolved substances on p-nitrophenol photolysis were investigated,and possible mechanisms were discussed. The results demonstrated that the quantum yield for hydroxyl radicals from the NCM was 1. 30 × 10-4,which is approximately 1. 86 times higher than that from Ti O2. The photolysis rate of p-nitrophenol in the presence of NCM was 0. 0055 min-1,which is much higher than that in pure water( 9. 52 × 10-4 min-1). This promotion was mainly caused by photo-induced generation of·OH on NCM surface under light,in which UVA plays an important role in photolysis. The photolysis rate of p-nitrophenol increased with the increase of light intensity and membrane area. Acidic solution( p H = 2. 0) was preferred for the degradation of p-nitrophenol,with a photolysis rate of 0. 016 5 min-1; the corresponding degradation of p-nitrophenol exceeded 90% in 120 min. The effects of dissolved substances on photolysis were significantly different. NO-3 promoted photolysis by generation of·OH,and dissolved organic matter decreased photolysis through light attenuation. The intermediate products of gas chromatography-mass spectrometry analysis mainly included phenol,hydroquinone,malonic acid,and oxalic acid,and the possible photolysis pathway was given accordingly.
引文
[1]任磊,史延华,贾阳,等.菌株Arthrobacter sp. CN2降解对硝基苯酚的特性与动力学[J].环境科学,2015,36(5):1757-1762.Ren L,Shi Y H,Jia Y,et al. Biodegradation characteristics and kinetics of p-nitrophenol by strain Arthrobacter sp. CN2[J].Environmental Science,2015,36(5):1757-1762.
    [2]郑凤英,钱沙华,李顺兴,等. 3,5-二硝基水杨酸表面修饰纳米Ti O2吸附对硝基苯酚[J].环境科学,2006,27(6):1140-1143.Zheng F Y,Qian S H,Li S X,et al. Adsorption of p-nitrophenol by nanosized titanium dioxide surface modified with 3, 5-dinitrosalicylic acid[J]. Environmental Science,2006,27(6):1140-1143.
    [3]刘丹,刘济宁,吴晟旻,等.太湖水体中对硝基苯酚的分布特征及风险评价[J].中国环境科学,2017,37(2):761-767.Liu D,Liu J N,Wu S M,et al. Distribution and ecological risk assessment of p-nitrophenol in Taihu Lake and its tributaries[J].China Environmental Science,2017,37(2):761-767.
    [4]宋瀚文,王东红,徐雄,等.我国24个典型饮用水源地中14种酚类化合物浓度分布特征[J].环境科学学报,2014,34(2):355-362.Song H W,Wang D H,Xu X,et al. Occurrence of 14 phenols in 24 typical drinking water sources of China[J]. Acta Scientiae Circumstantiae,2014,34(2):355-362.
    [5] Ghime D,Ghosh P. Kinetic model for the oxidative degradation of aqueous p-nitrophenol by fenton's reagent[J]. Journal of Scientific&Industrial Research,2018,77:208-212.
    [6] Meijide J,Rosales E,Pazos M,et al. p-Nitrophenol degradation by electro-Fenton process:pathway, kinetic model and optimization using central composite design[J]. Chemosphere,2017,185:726-736.
    [7]曹飞,袁守军,张梦涛,等.臭氧氧化水溶液中对乙酰氨基酚的机制研究[J].环境科学,2014,35(11):4185-4191.Cao F, Yuan S J, Zhang M T, et al. Impact factors and degradation mechanism for the ozonation of acetaminophen in aqueous solution[J]. Environmental Science,2014,35(11):4185-4191.
    [8] Nosaka Y,Nosaka A. Understanding hydroxyl radical(·OH)generation processes in photocatalysis[J]. ACS Energy Letters,2016,1(2):356-359.
    [9]张轶,黄若男,王晓敏,等. Ti O2光催化联合技术降解苯酚机制及动力学[J].环境科学,2013,34(2):596-603.Zhang Y,Huang R N,Wang X M,et al. Mechanism and kinetics of phenol degradation by Ti O2photocatalytic combined technologies[J]. Environmental Science,2013,34(2):596-603.
    [10]唐海,沙俊鹏,颜酉斌,等. Ti O2光催化耦合SO-·4体系对硝基苯酚的降解性能及动力学[J].环境工程学报,2016,10(1):205-211.Tang H,Sha J P,Yan Y B,et al. Degradation performance and kinetics for p-nitrophenol by Ti O2photocatalysis combined with sulfate radical system[J]. Chinese Journal of Environmental Engineering,2016,10(1):205-211.
    [11] Tai C,Zhang S D,Yin Y G,et al. Facile photoinduced generation of hydroxyl radical on a nitrocellulose membrane surface and its application in the degradation of organic pollutants[J]. ChemSusChem,2018,11(5):843-847.
    [12]黄卫红,杨丹,阮介兵,等.光催化与Fenton试剂对硝基苯酚降解的研究[J].环境科学与技术,2010,33(12):71-75.Huang W H,Yang D,Ruan J B,et al. Photocatalysis coupled with fenton reagent for degrading p-nitrophenol[J].Environmental Science&Technology,2010,33(12):71-75.
    [13]代志峰,邰超,张少栋,等.天然水体溶解性物质对5种抗生素光解的影响[J].中国环境科学,2018,38(6):2273-2282.Dai Z F,Tai C,Zhang S D,et al. Influence of dissolved substances in natural water on the photolysis of five antibiotics[J]. China Environmental Science,2018,38(6):2273-2282.
    [14]张秀蓝,郭婧,杨文龙,等.在线固相萃取-液相色谱法测定水中苯酚类污染物[J].环境化学,2017,36(1):201-203.Vione D,Falletti G,Maurino V,et al. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples[J].Environmental Science&Technology,2006,40(12):3775-3781.
    [15] Ishibashi K I,Fujishima A,Watanabe T,et al. Quantum yields of active oxidative species formed on Ti O2photocatalyst[J].Journal of Photochemistry and Photobiology A:Chemistry,2000,134(1-2):139-142.
    [16] Huang W Y,Brigante M,Wu F,et al. Assessment of the Fe(Ⅲ)-EDDS complex in fenton-like processes:from the radical formation to the degradation of bisphenol A[J]. Environmental Science&Technology,2013,47(4):1952-1959.
    [17] Ismail L, Rifai A, Ferronato C, et al. Towards a better understanding of the reactive species involved in the photocatalytic degradation of sulfaclozine[J]. Applied Catalysis B:Environmental,2016,185:88-99.
    [18] Marchisio A,Minella M,Maurino V,et al. Photogeneration of reactive transient species upon irradiation of natural water samples:formation quantum yields in different spectral intervals,and implications for the photochemistry of surface waters[J].Water Research,2015,73:145-156.
    [19]邰超,张少栋,阴永光,等.太阳光下水中2,4,6-三氯酚的光解机制研究[J].中国环境科学,2016,36(8):2380-2387.Tai C, Zhang S D, Yin Y G, et al. Studies on the photodecomposition mechanism of 2,4,6-trichlorophenol in water under sunlight irradiation[J]. China Environmental Science,2016,36(8):2380-2387.
    [20]郭俊元,王彬. HDTMA改性沸石的制备及吸附废水中对硝基苯酚的性能和动力学[J].环境科学,2016,37(5):1852-1857.Guo J Y,Wang B. Preparation of HDTMA-modified zeolite and its performance in nitro-phenol adsorption from wastewaters[J].Environmental Science,2016,37(5):1852-1857.
    [21] Vione D,Minella M,Maurino V,et al. Indirect photochemistry in sunlit surface waters:photoinduced production of reactive transient species[J]. Chemistry-A European Journal,2014,20(34):10590-10606.
    [22]尉小旋,陈景文,王如冰,等.氧氟沙星和诺氟沙星的水环境光化学转化:pH值及溶解性物质的影响[J].环境化学,2015,34(3):448-454.Wei X X,Chen J W,Wang R B,et al. Aquatic photochemical transformation of ofloxacin and norfloxacin:effects of pH and water constituents[J]. Environmental Chemistry,2015,34(3):448-454.
    [23] Ge L K,Chen J W,Wei X X,et al. Aquatic photochemistry of fluoroquinolone antibiotics:kinetics,pathways,and multivariate effects of main water constituents[J]. Environmental Science&Technology,2010,44(7):2400-2405.
    [24] Liu H,Zhao H M,Quan X,et al. Formation of chlorinated intermediate from bisphenol A in surface saline water under simulated solar light irradiation[J]. Environmental Science&Technology,2009,43(20):7712-7717.
    [25]李艳霞,段晓勇,李先国,等.水体中壬基酚光降解机理研究[J].化学学报,2012,70(17):1819-1826.Li Y X,Duan X Y, Li X G, et al. Mechanism study on photodegradation of nonylphenol in water by intermediate products analysis[J]. Acta Chimica Sinica,2012,70(17):1819-1826.
    [26] Grebel J E,Pignatello J J,Song W H,et al. Impact of halides on the photobleaching of dissolved organic matter[J]. Marine Chemistry,2009,115(1-2):134-144.
    [27] Glaeser S P, Grossart H P, Glaeser J. Singlet oxygen, a neglected but important environmental factor:short-term and long-term effects on bacterioplankton composition in a humic lake[J]. Environmental Microbiology,2010,12(12):3124-3136.
    [28] Page S E,Arnold W A,Mc Neill K. Assessing the contribution of free hydroxyl radical in organic matter-sensitized photohydroxylation reactions[J]. Environmental Science&Technology,2011,45(7):2818-2825.
    [29] Wenk J,Von Gunten U,Canonica S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical[J]. Environmental Science&Technology,2011,45(4):1334-1340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700