用户名: 密码: 验证码:
2D-SiC_f/SiC复合材料抗拉强度统计分布规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Statistical distribution of tensile strength of a 2D-SiC_f/SiC composite
  • 作者:韩旭旭 ; 张程煜 ; 陈博 ; 王波 ; 张巧君 ; 韩栋 ; 李玫
  • 英文作者:HAN Xuxu;ZHANG Chengyu;CHEN Bo;WANG Bo;ZHANG Qiaojun;HAN Dong;LI Mei;Science and Technology on Thermostructural Composite Materials Laboratory,Northwestern Polytechnical University;School of Aeronautics,Northwestern Polytechnical University;
  • 关键词:2D-SiCf/SiC ; 抗拉强度 ; 统计分布 ; Weibull分布 ; Anderson-Darling检验 ; 复合材料
  • 英文关键词:2D-SiCf/SiC;;tensile strength;;statistics;;Weibull distribution;;Anderson-Darling method;;composites
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:西北工业大学超高温结构复合材料国家级重点实验室;西北工业大学航空学院;
  • 出版日期:2018-05-03 09:36
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(51572224);; 装备预研基金超高温结构复合材料重点实验室创新基金(6142911050115);; 陕西省2017年创新能力支撑计划项目(2017KW-019)
  • 语种:中文;
  • 页:FUHE201902020
  • 页数:7
  • CN:02
  • ISSN:11-1801/TB
  • 分类号:172-178
摘要
2D-SiCf/SiC复合材料是航空航天领域热端构件的关键材料。材料抗拉强度的统计分布规律在构件的设计与分析中发挥着重要作用。本文测试了化学气相渗透方法制备的2D-SiCf/SiC的室温和1 200℃的抗拉强度,并使用扫描电子显微镜进行了断口形貌分析。采用Weibull分布、正态分布和对数正态分布等三种模型分析了测试结果,并根据Anderson-Darling检验方法进行了检验。结果表明,Weibull分布对2D-SiCf/SiC抗拉强度拟合优于正态分布和对数正态分布。根据Weibull模数大小,1 200℃抗拉强度的分散性大于室温抗拉强度的分散性。利用二参数Weibull分布精确预测了2D-SiCf/SiC室温和1 200℃抗拉强度。分析表明2D-SiCf/SiC抗拉强度的分散性主要来源于纤维/基体界面结合强度和纤维强度的分散性。
        2 D-SiCf/SiC composite is an important thermostructural material in aeronautics and astronautics fields.The statistical distributions of the tensile strength play a critical role in design,manufacture,examination and verification of the 2 D-SiCf/SiC composite and the related components made of the composite.Therefore,the tensile strength of the 2 D-SiCf/SiC was measured at room temperature(RT)and 1 200℃.SEM was employed to observe the fracture morphology.The result of the tensile strength was analyzed by Weibull,normal and lognormal distribution statistics and verified by Anderson-Darling method.The result shows the tensile strength at RT and 1 200℃of2 D-SiCf/SiC can be better described by Weibull distribution than normal distribution and lognormal distribution.The tensile strength at 1 200℃scatters is at larger range than that at RT according to Weibull model.The average tensile strength can be accurately predicted by the Weibull distribution.The fracture morphology confirms that distribution of the tensile strength of the 2 D-SiCf/SiC is mainly caused by the fiber/matrix interfacial bonding strength and the fiber strength.
引文
[1]张立同,成来飞.新型碳化硅陶瓷基复合材料的研究进展[J].航空制造技术,2003(1):24-32.ZHANG Litong,CHENG Laifei.Progress in research work of new CMC-SiC[J].Aeronautical Manufacturing Technology,2003(1):24-32(in Chinese).
    [2] KOHYAMA A,SEKI M,ABE K,et al.Interactions between fusion materials R&D and other technologies[J].Journal of Nuclear Materials,2000,283-287:20-27.
    [3] EHRLICH K.Materials research towards a fusion reactor[J].Fusion Engineering&Design,2001,56(1):71-82.
    [4]赵锴.SiC/SiC复合材料制备及性能研究[D].西安:西北工业大学,2007.ZHAO Kai.Preparation and property research of SiC/SiC composites[D].Xi’an:Northwestern Polytechnical University,2007(in Chinese).
    [5] BREWER D,OJARD G,GIBLE M.Ceramic matrix composite combustor liner rig test[C]//ASME Turbo Expo2000:Power for Land,Sea,and Air.American Society of Mechanical Engineers,2000:V004T02A028.
    [6]张立同,成来飞.连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J].复合材料学报,2007,24(2):1-6.ZHANG Litong,CHENG Laifei.Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J].Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese).
    [7] KRENLEL W,NASLAIN R,SCHNEIDER H.Probabilistic-statistical approach to the ultimate failure of ceramic matrix composites[M]//High Temperature Ceramic Matrix Composites,Wiley-VCH Verlag GmbH&Co.KGaA,2006.
    [8] CALARD V,LAMON J.A probabilistic-statistical approach to the ultimate failure of ceramic-matrix composites—Part I:Experimental investigation of 2D woven SiC/SiC composites[J].Composites Science and Technology,2002,62(3):385-393.
    [9] CALARD V,LAMON J.A probabilistic statistical approach to the ultimate failure of ceramic-matrix composites—Part II:Macroscopic model[J].Composites Science&Technology,2002,62(3):395-399.
    [10]吴守军,成来飞,董宁,等.3D Hi-Nicalon/SiC复合材料室温三点弯曲强度分布[J].复合材料学报,2005,22(5):130-133.WU Shoujun,CHENG Laifei,DONG Ning,et al.Flexural strength distribution of 3DHi-Nicalon/SiC in three point bending test at room temperature[J].Acta Materiae Compositae Sinica,2005,22(5):130-133(in Chinese).
    [11]李辉,张立同,曾庆丰,等.2D-C/SiC复合材料的可靠性评价[J].复合材料学报,2007,24(4):95-100.LI Hui,ZHANG Litong,ZENG Qingfeng,et al.Reliability analysis of 2D-C/SiC composite[J].Acta Materiae Compositae Sinica,2007,24(4):95-100(in Chinese).
    [12] BASU B,TIWARI D,KUNDU D,et al.Is Weibull distribution the most appropriate statistical strength distribution for brittle materials?[J].Ceramics International,2009,35(1):237-246.
    [13]连续纤维增强陶瓷基复合材料拉伸性能试验方法:GJB8736—2015[S].西安:西北工业大学,2015.Test method for tensile properties of continuous fiber-reinforced ceramic composites at ambient temperature:GJB8736—2015[S].Xi’an:Northwestern Polytechnical University,2015(in Chinese).
    [14]连续纤维增强陶瓷基复合材料高温力学性能试验方法第一部分拉伸性能试验方法:Q/AVIC 06185.1—2015[S].北京:中国航空工业集团有限公司,2015.Mechanical properties of continuous fiber-reinforced ceramic composites at high temperature I:Test method for tensile properties:Q/AVIC 06185.1—2015[S].Beijing:Aviation Industry Corporation of China,2015(in Chinese).
    [15]中华人民共和国交通运输部.聚合物基复合材料体系的材料取证与等同[M].西安:中国飞机强度研究所,2004:16-17.Ministry of Transport of the People’s Republic of China.Material qualification and equivalency for polymer matrix composite material systems[M].Xi’an:China Aircraft Strength Research Institute,2004:16-17(in Chinese).
    [16] LIENKAMP M,EXNER H E.Prediction of the strength distribution for unidirectional fiber reinforced composites[J].Acta Materialia,1996,44(11):4433-4446.
    [17] RINNE H.The Weibull distribution:A handbook[M].Boca Raton:CRC Press,2008.
    [18]罗征.采用LPVCS为先驱体制备SiC/SiC复合材料及其高温性能研究[D].长沙:国防科学技术大学,2014.LUO Zheng,The study of high-temperature performance of SiC/SiC composites by LPVCS[D].Changsha:National University of Defense Technology,2014(in Chinese).
    [19] CURTIN W A.In situ fiber strengths in ceramic-matrix composites from fracture mirrors[J].Journal of the American Ceramic Society,1994,77(4):1075-1078.
    [20]江大志,汪洋,周元鑫,等.修正的断裂镜面法及其在C/SiC复合材料中的应用-碳纤维的就位强度[C]//全国复合材料学术会议.2000.WANG Dazhi,WANG Yang,ZHOU Yuanxin,et al.Up-dated fracture mirror method and it’s application in Cf/SiC composites-in-situ strength of carbon fibers[C]//National Conference on Composite Materials.2000(in Chinese).
    [21]江大志,汪洋,周元鑫,等.在碳化硅基复合材料中碳纤维的就位强度[J].复合材料学报,2001,18(3):67-71.WANG Dazhi,WANG Yang,ZHOU Yuanxin,et al.In-situ strength of carbon fibers in silicon carbide matrix composites[J].Acta Materiae Compositae Sinica,2001,18(3):67-71(in Chinese).
    [22]姚江薇,于伟东.碳纤维断面结构观察[C]//基础、创新、高效:全国复合材料学术会议.2006.YAO Jiangwei,YU Weidong.Fracture structure observation of carbon fibers[C]//Basic,Innovative and Efficient:National Composite Conference.2006(in Chinese).
    [23] YOUNGBLOOD G E,LEWINSOHN C,JONES R H,et al.Tensile strength and fracture surface characterization of HiNicalon SiC fibers[J].Journal of Nuclear Materials,2001,289(1):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700