用户名: 密码: 验证码:
美国白蛾丝氨酸蛋白酶基因HcSP1的克隆、时空表达及对取食不同寄主植物的表达响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cloning and spatio-temporal expression of serine protease gene HcSP1 and its expression in response to feeding on different host plants in Hyphantria cunea (Lepidoptera: Arctiidae)
  • 作者:赵旭东 ; 孙宇航 ; 陈昌宇 ; 田朔 ; 陶蓉 ; 郝德君
  • 英文作者:ZHAO Xu-Dong;SUN Yu-Hang;CHEN Chang-Yu;TIAN Shuo;TAO Rong;HAO De-Jun;Coinnovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University;College of Forestry, Nanjing Forestry University;
  • 关键词:美国白蛾 ; 丝氨酸蛋白酶 ; 蛋白酶 ; 序列分析 ; 时空表达 ; 寄主植物
  • 英文关键词:Hyphantria cunea;;serine proteases;;trypsin;;sequence analysis;;temporal and spatial expression patterns;;host plant
  • 中文刊名:KCXB
  • 英文刊名:Acta Entomologica Sinica
  • 机构:南京林业大学南方现代林业协同创新中心;南京林业大学林学院;
  • 出版日期:2019-02-20
  • 出版单位:昆虫学报
  • 年:2019
  • 期:v.62
  • 基金:江苏省研究生培养创新工程(KYCX18_0957);; 江苏省六大人才高峰资助项目(NY-013);; 江苏省高校“青蓝工程”资助项目
  • 语种:中文;
  • 页:KCXB201902003
  • 页数:10
  • CN:02
  • ISSN:11-1832/Q
  • 分类号:22-31
摘要
【目的】为探究美国白蛾Hyphantria cunea在寄主转换过程中的消化生理机制奠定基础。【方法】通过筛选美国白蛾cDNA文库,克隆美国白蛾丝氨酸蛋白酶基因。荧光定量PCR检测该基因在美国白蛾不同发育阶段的表达特性;半定量RT-PCR和荧光定量PCR分别检测该基因在美国白蛾5龄幼虫体内不同组织中的分布及表达特性;荧光定量PCR检测取食不同寄主植物(美洲黑杨Populus deltoides,日本晚樱Cerasus serrulata var.lannesiana,山樱花Cerasus serrulata,喜树Camptotheca acuminata和法国梧桐Platanus orientalis)叶片后美国白蛾4龄幼虫中该基因的表达量。【结果】克隆获得美国白蛾丝氨酸蛋白酶基因HcSP1(GenBank登录号:MH663425),开放阅读框长882 bp,编码293个氨基酸,预测分子量为30.5 kD,理论等电点预测为9.86。编码蛋白N末端疏水区包含15个氨基酸组成的信号肽;具有丝氨酸蛋白酶的典型特征,即氨基酸序列中具有组氨酸(His)、天门冬氨酸(Asp)以及丝氨酸(Ser)残基组成的酶活性催化中心三元件;具有明显的胰蛋白酶前体的特征,即具有信号肽、激活肽以及胰蛋白酶N末端保守的起始氨基酸序列(IVGG)。NCBI BLAST比对结果表明美国白蛾HcSP1与其他鳞翅目昆虫丝氨酸蛋白酶的氨基酸序列一致性在50%~70%之间。荧光定量PCR结果显示,HcSP1在美国白蛾幼虫不同发育阶段的相对表达量呈现动态的变化,并随着幼虫虫龄的增长呈现上升趋势。半定量RT-PCR及荧光定量PCR结果显示,HcSP1在美国白蛾5龄幼虫头部、唾液腺、中肠、脂肪体、表皮、马氏管和血淋巴等组织中均有表达且在幼虫中肠中表达量极高。与取食其他寄主植物叶片相比,美国白蛾取食喜树叶片后HcSP1的相对表达量明显升高,并显著高于取食其他寄主植物。【结论】本研究克隆获得美国白蛾丝氨酸蛋白酶基因HcSP1,检测了其在美国白蛾不同发育阶段、不同组织以及取食不同寄主植物叶片后的表达量,为探究美国白蛾在寄主转换过程中消化生理的机制奠定基础,也为美国白蛾的防治提供新的思路。
        【Aim】 To lay a foundation for exploring the mechanism of digestive physiology of Hyphantria cunea(Drury) in host transformation. 【Methods】 We first cloned a serine protease gene by screening the H. cunea cDNA library. We then analyzed the expression patterns of this gene in different developmental stages of H.cunea by qPCR. The distribution and expression patterns of this gene in different tissues of the 5 th instar larvae of H.cunea were analyzed by semi-quantitative RT-PCR and qPCR, respectively, and the expression patterns in the 4 th instar larvae of H.cunea feeding on leaves of different host species(Populus deltoids, Cerasus serrulata var. lannesiana, Cerasus serrulata, Camptotheca acuminata and Platanus orientalis) were detected by qPCR. 【Results】 A serine protease gene HcSP1(GenBank accession no.: MH663425) was successfully cloned from H. cunea. The open reading frame(ORF) of HcSP1 is 882 bp in length, encoding 293 amino acids, with the predicted molecular weight(MW) of 30.5 kD and the theoretical isoelectric point(pI) of 9.86. The predicted N-terminal hydrophobic region contains signal peptide consisting of 15 amino acid residues. The protein encoded by HcSP1 contains the enzyme activity catalytic center formulated with His, Asp and Ser residues, which is a typical feature of serine proteases. HcSP1 also possesses some typical features of putative trypsin precursors, such as containing a signal peptide, activation peptide and conserved N-terminus(IVGG). The NCBI BLAST alignment revealed that the amino acid sequence identities between HcSP1 of H. cunea and other lepidopteran serine proteases are between 50% and 70%. The qPCR results indicated that the expression of HcSP1 in H. cunea in different developmental stages showed dynamic change, increasing with the larval instar. Semi-quantitative RT-PCR results showed that HcSP1 was expressed in various tissues of the 5 th instar larva of H. cunea including head, salivary gland, midgut, fat body, cuticle, Malpighian tubules and hemolymph, and qPCR results further revealed that this gene had the highest expression level in the midgut. The expression level of HcSP1 was significantly higher in larvae of H. cunea feeding on C. acuminata leaves than in larvae feeding on other host plants. 【Conclusion】 In this study, we obtained a serine protease gene HcSP1 in H. cunea, and detected its developmental and tissue expression patterns, and its expression levels in the 4 th instar larvae of H. cunea feeding on leaves of different host species. The results lay a foundation for exploring the mechanism of digestive physiology of H. cunea in host transformation, and also provide new insight for the development of new management tools for H. cunea.
引文
Brackney DE, Isoe J, Zamora J, Lv BWC, Foy BD, Miesfled RL, Olsen KE, 2010. Expression profiling and comparative analyses of seven midgut serine proteases from the yellow fever mosquito, Aedes aegypti. J. Insect Physiol., 56(7): 736-744.
    Chen H, Zhu YC, Whitworth RJ, Reese JC, Chen MS, 2013. Serine and cysteine protease-like genes in the genome of a gall midge and their interactions with host plant genotypes. Insect Biochem. Molec. Biol., 43(8): 701-711.
    Christeller JT, Laing WA, Markwick NP, Burgess EPJ, 1992. Midgut protease activities in 12 phytophagous lepidopteran larvae: dietary and protease inhibitor interactions. Insect Biochem. Molec. Biol., 22(7): 735-746.
    Colebatch G, Cooper P, East P, 2002. cDNA cloning of a salivary chymotrypsin-like protease and the identification of six additional cDNAs encoding putative digestive proteases from the green mirid, Creontiades dilutus (Hemiptera: Miridae). Insect Biochem. Molec. Biol., 32(9): 1065-1075.
    Gomi T, 1997. Seasonal adaptation of a colonizing insect, the fall webworm, Hyphantria cunea Drury in Japan. Insectarium, 34: 320-325.
    Herrero S, Combes E, Oers MMV, Vlak JM, Beekwilder J, 2005. Identification and recombinant expression of a novel chymotrypsin from Spodoptera exigua. Insect Biochem. Molec. Biol., 35(10): 1073-1082.
    Ji R, Xie BY, Li XH, Gao ZX, Li DM, 2003. Research progress on the invasive species, Hyphantria cunea. Entomol. Knowl., 40(1): 13-18. [季荣, 谢宝瑜, 李欣海, 高增祥, 李典谟, 2003. 外来入侵种——美国白蛾的研究进展. 昆虫知识, 40(1): 13-18]
    Johnston KA, Lee MJ, Gatehouse JA, Anstee JH, 1991. The partial purification and characterisation of serine protease activity in midgut of larval Helicoverpa armigera. Insect Biochem., 21(4): 389-397.
    Kipgen L, Aggarwal KK, 2014. Gut protease profiles of different instars of Helicoverpa armigera (Lepidoptera: Noctuidae). Int. J. Trop. Insect Sci., 34(3): 172-178.
    Kraut J, 1977. Serine proteases: structure and mechanism of catalysis. Annu. Rev. Biochem., 46: 331-358.
    Li LS, Yuan YF, Wu L, Chen M, 2018. Effects of host plants on the feeding behavior and detoxification enzyme activities in Hyphantria cunea (Lepidoptera: Arctiidae). Acta Entomol. Sin., 61(2): 232-239. [李路莎, 袁郁斐, 武磊, 陈敏, 2018. 不同寄主植物对美国白蛾幼虫取食行为及解毒酶活性的影响. 昆虫学报, 61(2): 232-239]
    Liu G, 2007. Camptothecin Insecticidal-Activity and Mechanism to Plutella xylostella L. MSc Thesis, Zhejiang Forestry University, Hangzhou. [刘刚, 2007. 喜树碱对小菜蛾的生物活性及作用机理研究. 杭州: 浙江林学院硕士学位论文]
    Liu HW, Li YS, Xin T, Wang DD, 2017. A midgut-specific serine protease, BmSP36, is involved in dietary protein digestion in the silkworm, Bombyx mori. Insect Sci., 24(5): 753-767.
    Livak KJ, Schmittgen TD, 2001. Analysis of relative gene expression data using realtime quantitative PCR and the 2-ΔΔCT method. Methods, 25(4): 402-408.
    Lomate PR, Mahajan NS, Kale SM, Gupta VS, Giri AP, 2014. Identification and expression profiling of Helicoverpa armigera microRNAs and their possible role in the regulation of digestive protease genes. Insect Biochem. Molec. Biol., 54(11): 129-137.
    Mazumdar-Leighton S, Babu CR, Bennett J, 2000. Identification of novel serine proteinase gene transcripts in the midguts of two tropical insect pests, Scirpophaga incertulas (Wk.) and Helicoverpa armigera (Hb.). Insect Biochem. Molec. Biol., 30(1): 57-68.
    Peterson AM, Fernando GJP, Wells MA, 1995. Purification, characterization and cDNA sequence of an alkaline chymotrypsin from the midgut of Manduca sexta. Insect Biochem. Molec. Biol., 25(7): 765-774.
    Saikia M, Singh YT, Bhattacharya A, Mazumdarleighton S, 2011. Expression of diverse midgut serine proteinases in the sericigenous Lepidoptera Antheraea assamensis (Helfer) is influenced by choice of host plant species. Insect Mol. Biol., 20(1): 1-13.
    Shi M, Zhu N, Yi Y, Chen XX, 2013. Four serine protease cDNAs from the midgut of Plutella xylostella and their proteinase activity are influenced by the endoparasitoid, Cotesia vestalis. Arch. Insect Biochem. Physiol., 83(2): 101-114.
    Shi YX, Zhang YJ, Wang GR, Liang GM, Gao JG, Wu KM, Guo YY, 2008. Changes in mid-gut protease activities in larvae of Bt resistant and susceptible strains of Helicoverpa armigera Hübner. Chin. J. Appl. Environ. Biol., 14(3): 394-398. [史艳霞, 张永军, 王桂荣, 梁革梅, 高继国, 吴孔明, 郭予元, 2008. Bt抗性和敏感棉铃虫幼虫中肠主要蛋白酶活性的变化. 应用与环境生物学报, 14(3): 394-398]
    Singh AK, Mullick S, 1997. Effect of leguminous plants on the growth and development of gram pod borer, Helicoverpa armigera. Indian J. Entomol., 59(2): 209-214.
    Srinivasan A, Giri AP, Gupta VS, 2006. Structural and functional diversities in lepidopteran serine proteases. Cell Mol. Biol. Lett., 11(1): 132-154.
    Sun Y, Bai LX, Zhang YJ, Xiao LB, Tan YA, Wu GQ, 2012. Cloning of serine protease gene AlSP4 and its expression patterns after feeding on different host plants in Apolygus lucorum (Hemiptera: Miridae). Acta Entomol. Sin., 28(6): 641-650. [孙洋, 柏立新, 张永军, 肖留斌, 谭永安, 吴国强, 2012. 绿盲蝽丝氨酸蛋白酶基因AlSP4的克隆及取食不同寄主植物后的表达谱分析. 昆虫学报, 28(6): 641-650]
    Tang QF, Wu ZT, Jin T, Wu SL, 2005.The activity of major digestive enzymes in the midgut of Eupolyphaga sinensis. Chin. Bull. Entomol., 42(5): 557-561. [唐庆峰, 吴振廷, 金涛, 吴尚澧, 2005. 中华真地鳖中肠主要消化酶的活性研究. 昆虫知识, 42(5): 557-561]
    Wei H, Zhao SX, Hu JF, Zhan ZX, Wu W, 2006. Resistance decline of host plants to the population of Plutella xylostella in the field and effect of esterase activity. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.), 35(2): 138-142. [魏辉, 赵士熙, 胡进锋, 占志雄, 吴玮, 2006. 寄主植物对小菜蛾田间种群抗药性衰退及其酯酶活性的影响. 福建农林大学学报(自然科学版), 35(2): 138-142]
    Wolfson JL, Murdock LL, 1990. Diversity in digestive proteinase activity among insects. J. Chem. Ecol., 16(4): 1089-1102.
    Xiao JC, Yuan SQ, Wang JQ, Liang WQ, Wang JQ, Tang TQ, Luo DM, Cong LW, 2001. The biological characteristics and control of Hyphantria cunea. J. Shandong For. Sci. Technol., (S1): 54-55. [肖进才, 袁淑琴, 王健生, 梁文强, 王进泉, 汤天庆, 罗德明, 丛龙威, 2001. 美国白蛾生物学特性及防治. 山东林业科技, (S1): 54-55]
    Yang ZQ, Zhang YA, 2007. Researches on techniques for biocontrol of the fall webworm, Hyphantria cunea, a severe invasive insect pest to China. Chin. Bull. Entomol., 44(4): 465-471. [杨忠岐, 张永安, 2007. 重大外来入侵害虫——美国白蛾生物防治技术研究. 昆虫知识, 44(4): 465-471]
    Yao J, Buschman LL, Oppert B, Khajuria C, Zhu KY, 2012. Characterization of cDNAs encoding serine proteases and their transcriptional responses to Cry1Ab protoxin in the gut of Ostrinia nubilalis larvae. PLoS ONE, 7(8): e44090.
    Zhan Q, Zheng S, Feng Q, Liu L, 2015. A midgut-specific chymotrypsin cDNA (Slctlp1) from Spodoptera litura: cloning, characterization, localization and expression analysis. Arch. Insect Biochem. Physiol., 76(3): 130-143.
    Zhang C, Zhou DH, Zheng SC, Liu L, Tao S, Yang L, Hu SN, Feng QL, 2010. A chymotrypsin-like serine protease cDNA involved in food protein digestion in the common cutworm, Spodoptera litura: cloning, characterization, developmental and induced expression patterns, and localization. J. Insect Physiol., 56(7): 788-799.
    Zhou X, Fan D, Zhao K, 2016. Characterization of trypsin-like and chymotrypsin-like serine proteases from midgut of Mythimna separata Walker. Arch. Insect Biochem. Physiol., 92(3): 173-191.
    Zhu N, 2013. Cloning and Transcriptional Profile of Serine Protease cDNAs from Midgut of Diamondback Moth, Plutella xylostella, and Related Proteinase Activity. MSc Thesis, Zhejiang University, Hangzhou. [祝妮, 2013. 小菜蛾中肠丝氨酸蛋白酶基因的克隆、转录及其酶活的研究. 杭州: 浙江大学硕士学位论文]
    Zhu YC, Guo Z, Abel C, 2012. Cloning eleven midgut trypsin cDNAs and evaluating the interaction of proteinase inhibitors with Cry1Ac against the tobacco budworm, Heliothis virescens (F.) (Lepidoptera: Noctuidae). J. Invertebr. Pathol., 111(2): 111-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700