用户名: 密码: 验证码:
Co-Al-W基高温合金的团簇成分式
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cluster formulas of Co-Al-W-base superalloys
  • 作者:马启慧 ; 张宇 ; 王清 ; 董红刚 ; 董闯
  • 英文作者:Ma Qi-Hui;Zhang Yu;Wang Qing;Dong Hong-Gang;Dong Chuang;Key Laboratory of Materials Modification by Laser, Ion and Electron Beams Ministry of Education,Dalian University of Technology;
  • 关键词:Co-Al-W基高温合金 ; 成分式 ; 团簇加连接原子模型 ; 化学近程序
  • 英文关键词:Co-Al-W-base superalloys;;composition formula;;cluster-plus-glue-atom model;;chemical short-range order
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:大连理工大学三束材料改性教育部重点实验室;
  • 出版日期:2019-03-11 17:09
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金航空重大研究计划培育项目(批准号:91860108);国家自然科学基金(批准号:11674045)资助的课题~~
  • 语种:中文;
  • 页:WLXB201906006
  • 页数:11
  • CN:06
  • ISSN:11-1958/O4
  • 分类号:42-52
摘要
Co-Al-W基高温合金具有类似于Ni基高温合金的γ+γ'相组织结构.根据面心立方固溶体的团簇加连接原子结构模型,Ni基高温合金的成分式即最稳定的化学近程序结构单元可以描述为第一近邻配位多面体团簇加上次近邻的三个连接原子.本文应用类似方法,首次给出了Co-Al-W基高温合金的团簇成分式.利用原子半径和团簇共振模型,可计算出Co-Al-W三元合金的团簇成分通式,为[Al-Co_(12)](Co,Al,W)_3,即以Al为中心原子、Co为壳层原子的[Al-Co_(12)]团簇加上三个连接原子.对于多元合金,需要先将元素进行分类:溶剂元素——类Co元素Co (Co, Cr, Fe, Re, Ni,Ir,Ru)和溶质元素——类Al元素Al (Al,W,Mo, Ta,Ti,Nb,V等);进而根据合金元素的配分行为,将类Co元素分为Co~γ(Cr, Fe, Re)和Co~(γ')(Ni, Ir, Ru);根据混合焓,将类Al元素分为Al, W (W, Mo)和Ta (Ta, Ti, Nb, V等).由此,任何多元Co-Al-W基高温合金均可简化为Co-Al伪二元体系或者Co-Al-(W,Ta)伪三元体系,其团簇加连接原子成分式为[Al-Co_(12)](Co_(1.0)Al_(2.0))(或[Al-Co_(12)] Co_(1.0)Al_(0.5)(W,Ta)_(1.5)=Co_(81.250)Al_(9.375)(W,Ta)_(9.375) at.%).其中,γ与γ'相的团簇成分式分别为[Al-Co_(12)](Co_(1.5)Al_(1.5))(或[Al-Co_(12)] Co_(1.5)Al_(0.5)(W,Ta)_(1.0)=Co_(84.375)Al_(9.375)(W,Ta)_(6.250) at.%)和[Al-Co_(12)](Co_(0.5)Al_(2.5))(或[Al-Co_(12)] Co_(0.5)Al_(0.5)(W, Ta)_(2.0)=Co_(78.125)Al_(9.375)(W,Ta)_(12.500)at.%).例如,Co_(82)Al_9W_9合金的团簇成分式为[Al-Co_(12)]Co_(1.1)Al_(0.4)W_(1.4)(~[Al-Co_(12)]Co_(1.0)Al_(0.5)W_(1.5)),其中γ相的团簇成分式为[Al-Co_(12)]Co_(1.6)Al_(0.4)W_(1.0)(~[Al-Co_(12)]Co_(1.5)Al_(0.5)W_(1.0)),γ'相的团簇成分式为[Al-Co_(12)]Co_(0.3)Al_(0.5)W_(2.2)(~[AlCo_(12)]Co_(0.5)Al_(0.5)W_(2.0)).
        Having a γ/γ' microstructure similar to Ni-base superalloys and also including various alloying elements such as A1 and W, new Co-base superalloy, namely Co-Al-W-base alloy, has been widely studied as a kind of potential alternative of Ni-base superalloy, which is the most important high-temperature structural material in industrial applications. Besides, Co-Al-W-base alloy has also excellent mechanical properties, for example, creep properties comparable to those of the first-generation Ni-base single crystal superalloys. In our previous work,the ideal composition formula of Ni-base superalloy has been obtained by applying the cluster-plus-glue-atom structure model of faced centered cubic solid solution, which shows that the most stable chemical short-rangeorder unit is composed of a nearest-neighbor cluster and three next-neighbor glue atoms. In this paper, the ideal cluster formula of Co-Al-W-base superalloy is addressed by using the same approach. Based on cluster-plusglue-atom model theory, according to lattice constants and atom radii, calculations are carried out. The results show that the atom radius of A1 is equal to Covalent radius(0.126 nm) and for γ' phase the atom radius of W changes obviously(0.1316 nm). After analyzing atomic radii, the chemical formula for Co-Al-W ternary alloy is calculated to be [Al-Co_(12)](Co,A1,W)_3, which signifies an A1 centered atom and twelve Co nearest-neighbored cluster atoms plus three glue atoms, which is in good consistence with that for Ni-base single crystal superalloy.For multi-element alloy, the alloying elements are classified, according to the heat of mixing between the alloying elements and Co as well as partition behavior of alloying elements, as solvent elements-Co-like elements Co(Co, Ni, Ir, Ru, Cr, Fe, and Re) and solute elements-Al-like elements Al(Al,W,Mo,Ta,Ti,Nb,V,etc.).The solvent elements can be divided into two kinds according to partition behaves: Co~γ(Cr, Fe, and Re) and Co~(γ')(Ni, Ir, and Ru). The latter is further grouped into Al, W(W and Mo, which have weaker heat of mixing than Al-Co) and Ta(Ta, Ti, Nb, V, etc., which have stronger heat of mixing than Al-Co). Then all chemically complex Co-Al-W-base superalloys are simplified into Co-Al pseudo-binary or Co-Al-(W, Ta) pseudo-ternary system. Within the framework of the cluster-plus-glue-atom formulism and by analyzing the compositions of alloy, it is shown that the Co-Al-W-base superalloy satisfies the ideal formula [Al-Co_(12)](Co_(1.0)Al_(2.0))(or[Al-Co_(12)] Co_(1.0)Al_(0.5)(W, Ta)_(1.5)=Co_(81.250)Al_(9.375)(W,Ta)_(9.375) at.%). In the same way, those of γ and γ' phases are respectively [Al-Co_(12)](Co_(1.5)Al_(1.5))(or [Al-Co_(12)] Co_(1.5)Al_(0.5)(W, Ta)_(1.0)=Co_(84.375)Al_(9.375)(W, Ta)_(6.250) at.%)and [Al-Co_(12)](Co_(0.5)Al_(2.5))(or [Al-Co_(12)] Co_(0.5)Al_(0.5)(W,Ta)_(2.0) = Co_(78.125)Al_(9.375)(W,Ta)_(12.500) at.%). For example, alloy Co_(82)Al_9 W_9 and its γ and γ' phases are formulated respectively as [Al-Co_(12)]Co_(1.1)Al_(0.4)W_(1.4)(~[Al-Co_(12)]Co_(1.0)Al_(0.5)W_(1.5)),[Al-Co_(12)]Co_(1.6)Al_(0.4)W_(1.0)(~[Al-Co_(12)]Co_(1.5)Al_(0.5)W_(1.0)),and[Al-Co_(12)]Co_(0.3)Al_(0.5)W_(2.2)(~[AlCo_(12)]Co_(0.5)Al_(0.5)W_(2.0)).
引文
[1] Sims C T, Hagel W C 1972 The Superalloys(New York:John Wiley&Sons)p1
    [2] Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K2006 Science 312 90
    [3] Suzuki A, Pollock T M 2008 Acta Mater. 56 1288
    [4] Bauer A, Neumeiera S, Pyczakb F, Singer R F, Goken M2012 Mater. Sci. Eng. 550 333
    [5] Klein L, Shen Y, Killian M S, Virtanen S 2011 Corros. Sci.53 2713
    [6] Ooshima M, Tanaka K, Okamoto N L, Kishida K, Inui H2010 J. Alloys Compd. 508 71
    [7] Chen M, Wang C Y 2009 Scr. Mater. 60 659
    [8] Bauer A, Neumeier S, Pyczakc F, Goken M 2010 Scr. Mater.63 1197
    [9] Kobayashi S, Tsukamoto Y, Takasugi T 2012 Intermetallics31 94
    [10] Meher S, Yan H Y, Nag S, Dye D, Banerjee R 2012 Scr.Mater. 67 850
    [11] Morinaga M, Yukawa N, Ezaki H, Adachi H 1984 Superalloys(Warrendale, PA:The Metallurgical Society of AIME)p523
    [12] Zhang J S, Cui H, Hu Z L, Murata Y, Morinaga M, Yukawa N 1993 Acta Metall.Sin. 29 289(in Chinese)[张继山,崔华,胡壮麟,村田纯教,森永正彦,汤川夏夫1993金属学报29 289]
    [13] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G,Li Y H, Wu J, Xia J H 2007 J. Phys. D:Appl. Phys. 40 R273
    [14] Han G, Qiang J B, Li F W, Yuan L, Quan S G, Wang Q,Wang Y M, Dong C, Haussler P 2011 Acta Mater. 59 5917
    [15] Luo L J, Chen H, Wang Y M, Qiang J B, Wang Q, Dong C,Haussler P 2014 Philos. Mag. 94 2520
    [16] Zhang Y, Wang Q, Dong H G, Dong C, Zhang H Y, Sun X F2017 Acta Metall.Sin. 54 591(in Chinese)[张宇,王清,董红刚,董闯,张洪宇,孙晓峰2017金属学报54 591]
    [17] Bragg W L, Williams E J 1934 Proc. R. Soc. London, Ser. A151 699
    [18] Williams E 1935 Proc. R. Soc. London, Ser. A 152 231
    [19] Bethe H 1935 Proc. R. Soc. London, Ser. A 150 552
    [20] Cowly J 1950 Phys. Rev. 77 669
    [21] Cowly J 1960 Phys. Rev. 120 1648
    [22] Cowly J 1965 Phys. Rev. 138 A1384
    [23] Chen H, Wang Q, Wang Y M, Qiang J B, Dong C 2010Philos. Mag. 90 3935
    [24] Chen H, Wang Q, Wang Y M, Wang Y, Dong C 2011 Isr. J.Chem. 51 1226
    [25] Wang Y, Wang Q, Zhao J, Dong C 2010 Scr. Mater. 63 178
    [26] Yuan L, Pang C, Wang Y M, Wang Q, Qiang J B, Dong C2010 Intermetallics 18 1800
    [27] Li F W, Qiang J B, Wang Q, Wang Y M, Dong X L, Dong C, Zhu S J 2012 Intermetallics 30 86
    [28] Wang Z R, Dong D D, Qiang J B, Wang Q, Wang Y M,Dong C 2013 Sci. China:Phys. Mech. Astron. 56 1419
    [29] Wang Q, Zhu C L, Li Y H, Wu J, Dong C, Qiang J B, Zhang W, Inoue A 2007 Mater. Sci. Forum 561-565 1275
    [30] Gu J J 2011 M. S. Thesis(Dalian:Dalian University of Tech nology)(in Chinese)[谷俊杰2011硕士学位论文(大连:大连理工大学)]
    [31] Wang Q, Li Q, Li X N, Zhang R Q, Gao X X, Dong C, Liaw P K 2015 Metall. Mater. Trans. A 46 3924
    [32] Wang Q, Zha Q F, Liu E X, Dong C, Wang X J, Tan C X,Gong C J 2012 Acta Metall.Sin. 48 1201(in Chinese)[王清,查钱锋,刘恩雪,董闯,王学军,谭朝鑫,龚春俊2012金属学报48 1201]
    [33] Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C2010 Acta Metall.Sin. 46 1034(in Chinese)[马仁涛,郝传璞,王清,任明法,王英敏,董闯2010金属学报46 1034]
    [34] Dong D D 2017 Ph. D. Dissertation(Dalian:Dalian Univer sity of Technology)(in Chinese)[董丹丹2017博士学位论文(大连:大连理工大学)]
    [35] Dong C, Dong D D, Wang Q 2018 Acta Metall. Sin. 54 293(in Chinese)[董闯,董丹丹,王清2018金属学报54 293]
    [36] Hong H L, Wang Q, Dong C 2015 Sci. China:Mater. 58 355
    [37] Hong H L, Wang Q, Dong C, Liaw P K 2014 Sci. Rep. 4 7065
    [38] Hong H L, Dong C, Wang Q, Zhang Y, Geng Y X 2016 Acta Phys.Sin. 65 036101(in Chinese)[洪海莲,董闯,王清,张宇,耿遥祥2016物理学报65 036101]
    [39] Pearson W B 1973 J. Appl. Cryst. 6 306
    [40] Pyczak F,Bauer A, Goken M,Lorenz U,Neumeier S,Oehring M, Paul J, Schell N, Schreyer A, Stark A, Symanzik F 2015 J. Alloys Compd. 632 110
    [41] Povstugar I, Zenk C H, Li R, Choi P P, Neumeier S, Dolotko O, Hoelzel M, Goken M, Raabe D 2016 Mater. Sci. Technol.32 220
    [42] Shinagawa K, Omori T, Sato J, Oikawa K, Ohnuma I,Kainuma R, Ishida K 2008 Mater. Trans. 49 1474
    [43] Wang Y J, Wang C Y 2009 Appl. Phys. Lett. 94 261909
    [44] Bocchini P J,Lass E A,Moon K W, Williams M E,Campbell C E, Kattner U R, Dunand D C, Seidman D N 2013 Scr.Mater. 68 563
    [45] Povstugar I, Choi P P, Neumeier S, Bauer A, Zenk C H,Goken M, Raabe D 2014 Acta Mater. 78 78
    [46] Meher S, Banerjee R 2014 Intermetallics 49 138
    [47] Lass E A, Williams M E, Campbell C E, Moon K W, Kattner U R 2014 J. Phase Equilib. Diffus. 35 711
    [48] Zhong F, Li S S, Sha J B 2015 Mater. Sci. Eng. A 637 175
    [49] Sauza D J, Bocchini P J, Dunand D C, Seidman D N 2016Acta Mater. 117 135
    [50] Zhou H J, Xue F, Chang H, Feng Q 2018 J. Mater. Sci.Technol. 34 799
    [51] Takeuchi A, Inoue A 2005 Mater. Trans. 46 2817
    [52] Shinagawa K, Omori T, Oikawa K, Kainuma R, Ishida K2009 Scr. Mater. 61 612
    [53] Chen M,Wang C Y. 2010 Phys. Lett.A 374 3238
    [54] Ping D H, Cui C Y, Gu Y F, Harada H 2007 Ultramicroscopy107 791
    [55] Makineni S K, Nithin B, Chattopadhyay K 2015 Scr.Mater.98 36
    [56] Makineni S K, Samanta A, Rojhirunsakool T, Alam T, Nithin B, Singh A K, Banerjee R, Chattopadhyay K 2015 Acta Mater. 97 29
    [57] Pollock T M, Dibbern J, Tsunekane M, Suzuki 2010 JOM 6258
    [58] Yan H Y, Vorontsov V A, Dye D 2014 Intermetallics 48 44
    [59] Xue F, Zhou H J, Ding X F, Wang M L, Feng Q 2013 Mater.Lett. 112 215
    [60] Xue F, Zhou H J, Feng Q 2014 JOM 66 2486
    [61] Titus M S, Suzuki A, Pollock T M 2012 High Temperature Creep of New L12 Containing Cobalt-Base Superalloys(New York:John Wiley Sons. Inc.)p823
    [62] Shi L, Yu J J, Cui C Y, Sun X F 2015 Mater. Lett. 149 58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700