用户名: 密码: 验证码:
温度-荷载耦合作用下玻璃纤维增强复合材料-泡沫夹层结构Ⅰ-Ⅱ混合型界面断裂试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiments on mixing Ⅰ-Ⅱ interfacial fracture toughness of glass fiber reinforced plastic-foam sandwich structure under coupling effects of high temperature and loading
  • 作者:孙国庆 ; 马亚利 ; 霍瑞丽 ; 刘伟庆 ; 王璐
  • 英文作者:SUN Guoqing;MA Yali;HUO Ruili;LIU Weiqing;WANG Lu;College of Civil Engineering,Nanjing Tech University;
  • 关键词:复合材料 ; 夹层结构 ; 单臂弯曲试验(SLB) ; 应变能释放率 ; 裂纹扩展准则
  • 英文关键词:composite material;;sandwich structure;;single leg bending test(SLB);;strain energy release rate;;interface crack extension criterion
  • 中文刊名:NHXB
  • 英文刊名:Journal of Nanjing Tech University(Natural Science Edition)
  • 机构:南京工业大学土木工程学院;
  • 出版日期:2019-03-15
  • 出版单位:南京工业大学学报(自然科学版)
  • 年:2019
  • 期:v.41;No.193
  • 基金:国家自然科学基金(51678297,51408305);; 江苏省科技厅基础研究计划青年基金(BK20140946)
  • 语种:中文;
  • 页:NHXB201902008
  • 页数:8
  • CN:02
  • ISSN:32-1670/N
  • 分类号:48-55
摘要
复合材料夹层结构在长期的使用过程中发现界面剥离是夹层结构失效的常见模式之一,因此十分有必要研究不同温度条件下,玻璃纤维增强复合材料(GFRP)-聚氨酯泡沫夹层结构的I-II混合型界面断裂韧性。本项研究采用单臂弯曲试验(SLB)的方法测量GFRP-聚氨酯泡沫夹层结构的荷载-挠度曲线和裂纹扩展长度。试验结果表明:随着温度的升高,裂纹沿着界面扩展,芯材无破坏现象,极限承载力呈下降趋势。通过计算应变能释放率发现,随着温度的升高应变能释放率峰值呈上升趋势。运用界面裂纹扩展准则判定裂纹扩展符合理论要求。
        Composite material sandwich structure was widely used in many engineering fields due to its excellent performance. It is found that interfacial peeling is one of the common patterns of sandwich structure failure in the long-term use. The mixing Ⅰ-Ⅱ interfacial fracture toughness of glass fiber reinforced plastic( GFRP)-polyurethane foam sandwich structure under the effect of different temperatures was considered. The load-displacement curve and length of crack propagation of GFRP-foam sandwich structure were measured by single leg bending test(SLB). Results showed that as the temperature increased,the crack was expanded along the interface,the core material had no damage,and the ultimate bearing capacity was decreased.It was found that the peak of strain energy release rate was on the upward trend with the increase of temperature.The application of interface crack extension criterion to determine the crack propagation met the theoretical requirement.
引文
[1]叶列平,冯鹏.FRP在工程结构中的应用与发展[J].土木工程学报,2006,39(3):24.
    [2]王兴业,杨孚标,曾竟成,等.夹层结构复合材料设计原理及其应用[M].北京:化学工业出版社,2007.
    [3]咸贵军,李惠.FRP复合材料土木工程应用与耐久性[J].材料工程,2010,l:121.
    [4]范学明,王璐,刘伟庆,等.泡沫填充GFRP复合材料圆筒的轴向压缩吸能特性[J].玻璃钢/复合材料,2014(12):36.
    [5]唐桂云,王云飞,吴东辉,等.先进复合材料的无损检测[J].纤维复合材料,2006,23(1):33.
    [6]王小永,钱华.先进复合材料的主要缺陷与无损检测技术评价[J].无损探伤,2006,30(4):1.
    [7]KWEON J H,JUNG J W,KIM T H,et al.Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding[J].Composite Structure,2006,75(1/2/3/4):192.
    [8]陈浩,王璐,刘伟庆,等.复合材料泡沫夹层结构界面的温度-应变分布[J].材料科学与工程学报,2016,34(5):750.
    [9]杨序纲.复合材料界面[M].北京:化学工业出版社,2010.
    [10]AVILES F,CARLSSON L A.Experimental study of debonded sandwich panels under compressive loading[J].Journal of Sandwich Structures and Materials,2006,8(1):7.
    [11]邵晟阳,李坤,吴远樵,等.温度环境中复合材料强度准则探讨与破坏[C]∥北京力学会第十九届学术年会.北京:[s.n.],2013.
    [12]LIU J,ZHOU Z,MA L,et al.Temperature effects on the strength and crushing behavior of carbon fiber composite truss sandwich cores[J].Composites Part B:Engineering,2011,42(7):1860.
    [13]WANG L,FAN X,CHEN H,et al.Axial crush behavior and energy absorption capability of foam-filled GFRP tubes under elevated and high temperatures[J].Composite Structures,2016,149:339.
    [14]SUMIKAWA M,SHINDO Y,TAKEDA T,et al.Analysis of mode Iinterlaminar fracture and damage behavior of GFRP woven laminates at cryogenic temperatures[J].Journal of Composite Materials,2005,39(22):2053.
    [15]SHINDO Y,NARITA F,SATO T.Analysis of modeⅡinterlaminar fracture and damage behavior in end notched flexure testing of GFRP woven laminates at cryogenic temperatures[J].Acta Mechanical,2006,187(1/2/3/4):231.
    [16]SHINDO Y,TAKAHASHI S,TAKEDA T,et al.Mixed-mode interlaminar fracture and damage characterization in woven fabricreinforced glass/epoxy composite laminates at cryogenic temperatures using the finite element and improved test methods[J].Engineering Fracture Mechanics,2008,75(18):5101.
    [17]SHINDO Y,TAKEDA T,NARITA F,et al.Delamination growth mechanisms in woven glass fiber reinforced polymer composites under modeⅡfatigue loading at cryogenic temperatures[J].Composites Science and Technology,2009,69(11/12):1904.
    [18]MIURA M,SHINDO Y,NARITA F,et al.Mode III fatigue delamination growth of glass fiber reinforced polymer woven laminates at cryogenic temperatures[J].Cryogenics,2009,49(8):407.
    [19]SHINDO Y,MIURA M,TAKEDA T,et al.Cryogenic delamination growth in woven glass/epoxy composite laminates under mixedmodeⅠ/Ⅱfatigue loading[J].Composites Science and Technology,2011,71(5):647.
    [20]陈浩,王璐,刘伟庆,等.温度-荷载作用下玻璃纤维增强塑料-泡沫夹层结构I型断裂韧性分析[J].南京工业大学学报(自然科学版),2017,39(1):93.
    [21]马亚利,王璐,欧谨,等.温度荷载作用下GFRP-泡沫夹层结构Ⅱ型界面断裂韧性分析[J].南京工业大学学报(自然科学版),2017,39(3):90.
    [22]马亚利.温度-荷载耦合作用下泡沫复合材料夹层结构Ⅱ型界面剥离机理研究[D].南京:南京工业大学,2017.
    [23]中国轻工业联合会.硬质泡沫塑料拉伸性能试验方法:GB9641-1988[S].北京:中国标准出版社,1988.
    [24]中华人民共和国国家质量监督检验检疫总局.硬质泡沫塑料压缩性能的测定:GB/T 8813-2008[S].北京:中国标准出版社,2008.
    [25]陈浩.温度-荷载耦合作用下泡沫复合材料夹层结构I型界面剥离机理研究[D].南京:南京工业大学,2016.
    [26]中华人民共和国国家质量监督检验检疫总局.纤维增强塑料拉伸性能试验方法:GB/T 1447-2005[S].北京:中国标准出版社,2005.
    [27]AMERICAN SOCIETY FOR TESTING MATERIALS(ASTM).Standard test method for tensile properties of polymer matrix composite materials:ASTM D3039/D 3039M-2007[S].West Conshohocken:ASTM,2007.
    [28]中华人民共和国国家质量监督检验检疫总局.纤维增强塑料压缩性能试验方法:GB/T 1448-2005[S].北京:中国标准出版社,2005.
    [29]AMERICAN SOCIETY FOR TESTING MATERIALS(ASTM).Standard test method for mixed modeⅠ-modeⅡinterlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites:ASTM D6671/D 6671M-2006[S].West Conshohocken:ASTM,2006.
    [30]DAVIDSON B D,SUNDARARAMAN V.A single leg bending test for interfacial fracture toughness determination[J].International Journal of Fracture,1996,78(2):193.
    [31]DAVID B,JAMES R R.Elementary engineering fracture mechanics[M].Leiden:Martinus Nijhoff Publisher,1982.
    [32]泮世东.含面芯界面脱胶蜂窝夹芯结构的破坏行为研究[D].哈尔滨:哈尔滨工业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700