用户名: 密码: 验证码:
基于密度泛函理论的SF_6替代气体筛选方法的研究综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Review of Screening Sulfur Hexafluoride Alternative Gases Based on Density Functional Theory
  • 作者:李兴文 ; 陈力 ; 傅明利 ; 卓然 ; 王邸博 ; 罗颜
  • 英文作者:LI Xingwen;CHEN Li;FU Mingli;ZHUO Ran;WANG Dibo;LUO Yan;State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University;Electric Power Research Institute,China Southern Power Grid;
  • 关键词:密度泛函理论 ; 绝缘强度 ; 液化温度 ; 筛选 ; 碰撞电离截面
  • 英文关键词:density functional theory;;electric strength;;temperature of boiling;;screen;;total electron-impact ionization cross-sections
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:西安交通大学电力设备电气绝缘国家重点实验室;南方电网科学研究院有限责任公司;
  • 出版日期:2019-03-20
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.316
  • 基金:国家自然科学基金(51577143);; 陕西省自然科学基金重大项目(2017ZDJC-16);; 中国南方电网有限责任公司科技项目(ZBKJXM20170090)~~
  • 语种:中文;
  • 页:GDYJ201903001
  • 页数:8
  • CN:03
  • ISSN:42-1239/TM
  • 分类号:7-14
摘要
环境友好型SF_6替代气体的相关研究目前受到了极大的重视。文中介绍了国内外基于密度泛函理论(density functional theory, DFT)SF_6替代气体筛选方法的相关研究,详细阐述了预测未知绝缘气体的绝缘强度和液化温度的筛选方法,分析了计算选择的泛函、基组对计算结果的影响,指出了在M06-2X/6-311+G(3df)级别下计算值与实验值偏差较小。对比了预测时选择的气体分子微观参数对预测结果的影响,分析表明分子表面静电势与液化温度和绝缘强度相关性较强。提出了卤族元素取代对气体分子的绝缘强度和液化温度的影响及其变化规律,即随着卤族元素相对分子质量的增大,绝缘强度和液化温度也相应升高的变化规律。此外,电子碰撞电离的碰撞截面是筛选完成后进行绝缘特性研究的重要参数,通过对比基于密度泛函理论在DM公式和改进后的DM公式下的碰撞截面值,结果表明改进后的DM公式提高了计算结果的准确性。最后指出了未来研究发展的方向,考虑气体的绝缘、灭弧、环保等多个方面建立了SF_6替代气体的综合评价体系。
        Studies about environment-friendly SF6 alternatives have been paid more attentions recently. In this paper, the related researches on the method of sulfur hexafluoride substitutes based on density functional theory(DFT) are introduced. The screening methods for predicting the electric strength and liquefaction temperature of unknown insulating gas are described in detail, and the selected functional and basic set for calculation are analyzed. The influences of them on the calculation results indicate that the deviation between the calculated value and the experimental value is small at the M06-2 X/6-311+G(3 df) level. The influences of the microscopic parameters of the gas molecules selected during the prediction on the prediction results are compared. The analysis shows that the surface electrostatic potential is closely related to the liquefaction temperature and electric strength. The effects of halogen substitutions on the electric strength and liquefaction temperature of gas molecules and their changing rules are proposed. That is, as the relative molecular mass of halogens increases, the electric strength and liquefaction temperature also increase accordingly. In addition, the collision cross section of electron impact ionization is an important parameter for the study of insulation properties after screening.We compare the values of the collision section under the DM formula and the modified DM formula based on the density functional theory. The results show that the modified DM formula improves the accuracy of the calculation results. Finally,the direction of future research and development is pointed out, and a comprehensive evaluation system for SF6 alternative gas should be established under consideration of gas insulation, arc extinguishing, and environmental protection.
引文
[1]HERNáNDEZáVILA J L,BASURTO E,DE URQUIJO J.Electron transport and swarm parameters in CO2 and its mixtures with SF6[J].Journal of Physics D:Applied Physics,2002,35(18):2264.
    [2]UETA G,WADA J,OKABE S.Evaluation of breakdown characteristics of CO2 gas for non-standard lightning impulse waveformsbreakdown characteristics under single-frequency oscillation waveforms of 5.3 MHz to 20.0 MHz[J].IEEE Transactions on Dielectrics&Electrical Insulation,2011,18(1):617-626.
    [3]赵虎,李兴文,贾申利,等.1个大气压下50%SF6-50%CF4混合气体电击穿特性的研究[J].中国电机工程学报,2013,33(19):200-207.ZHAO Hu,LI Xingwen,JIA Shenli,et al.Study on electrical breakdown characteristics of 50%SF6-50%CF4 mixed gas at 1 atmosphere[J].Proceeding of the CSEE,2013,33(19):200-207.
    [4]KIEFFEL Y,BIQUEZ F.SF6 alternative development for high voltage switchgears[C]∥Electrical Insulation Conference.Denver,USA:IEEE,2015:379-383.
    [5]MANTILLA J,CLAESSENS M,KRIEGEL M.Environmentally friendly perfluoroketones-based mixture as switching medium in high voltage circuit breakers[C]∥CIGRE.Paris,France:CIGRE,2016.
    [6]POHLINK K,KIEFFEL Y,OWENS J,et al.Characteristics of fluoronitrile/CO2 mixture-an alternative to SF6[C]∥CIGRE.Paris,France:CIGRE,2016:D1-204.
    [7]PREVE C,MALADEN R,PICCOZ D.Method for validation of new eco-friendly insulating gases for medium voltage equipment[C]∥IEEE International Conference on Dielectrics.Montpellier,France:IEEE,2016:235-240.
    [8]KIEFFEL Y,BIQUEZ F.SF6 alternative development for high voltage switchgears[C]∥Electrical Insulation Conference.Denver,CO,USA:IEEE,2015:379-383.
    [9]李兴文,邓云坤,姜旭,等.环保气体C4F7N和C5F10O与CO2混合气体的绝缘性能及其应用[J].高电压技术,2017,43(3):708-714.LI Xingwen,DENG Yunkun,JIANG Xu,et al.Insulation performance and application of enviroment-friendly gases mixtures of C4F7N and C5F10O with CO2[J].High Voltage Engineering,2017,43(3):708-714.
    [10]周文俊,郑宇,杨帅,等.替代SF6的环保型绝缘气体研究进展与趋势[J].高压电器,2016,58(12):8-14.ZHOU Wenjun,ZHENG Yu,YANG Shuai,et al.Research progress and trend of environmentally friendly insulating gas replacing SF6[J].High Voltage Apparatus,2016,58(12):8-14.
    [11]李兴文,赵虎.SF6替代气体的研究进展综述[J].高电压技术,2016,42(6):1695-1701.LI Xingwen,ZHAO Hu.Study on progress of SF6 alternative gas[J].High Voltage Engineering,2016,42(6):1695-1701.
    [12]XIAO Dengming,DENG Yunkun.Determination of electron swarm parameters in pure CHF3 and CF4 by a time-resolved method[J].Plasma Science&Technology,2013,15(1):25-29.
    [13]赵虎,李兴文,贾申利.300 K下不同比例CF3I-N2和CF3I-CO2混合气体绝缘特性的计算分析[J].高电压技术,2013,39(7):1692-1697.ZHAO Hu,LI Xingwen,JIA Shenli.Calculation and analysis of the insulation characteristics of CF3I-N2 and CF3I-CO2 mixed gas at 300K[J].High Voltage Engineering,2013,39(7):1692-1697.
    [14]DEVINS J C.Replacement gases for SF6[J].IEEE Transactions on Electrical Insulation,2007,15(2):81-86.
    [15]BRAND K P.Dielectric strength,boiling point and toxicity of gasesdifferent aspects of the same basic molecular properties[J].IEEETransactions on Electrical Insulation,1982,17(5):451-456.
    [16]PARR R G.Density functional theory[J].Chemical&Engineering News,1983,68(1):2470-2484.
    [17]ENGEL E,DREIZLER R M.Density functional theory[M].New York,USA:Plenum Press,1995:2470-2484.
    [18]FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al.2009 Gaussian09,revision B.01[M].Wallingford,CT,USA:Gaussian Inc,2009.
    [19]RABIE M,DAHL D A,DONALD S M A,et al.Predictors for gases of high electrical strength[J].IEEE Transactions on Dielectrics&Electrical Insulation,2013,20(3):856-863.
    [20]FRANCK C M,DAHL D A,RABIE M,et al.An efficient procedure to identify and quantify new molecules for insulating gas mixtures[J].Contributions to Plasma Physics,2014,54(1):3-13
    [21]ANDERSEN M P S,KYTE M,ANDERSEN S T,et al.Atmospheric chemistry of(CF3)2CFCN:a replacement compound for the most potent industrial greenhouse gas,SF6[J].Environmental Science&Technology,2017,51:1321-1329.
    [22]MANTILLA J D,GARIBOLDI N,GROB S,et al.Investigation of the insulation performance of a new gas mixture with extremely low GWP[C]∥2014 Electrical Insulation Conference.Philadelphia,Pennsylvania,USA:IEEE,2014:469-473.
    [23]RABIE M,FRANCK C M.Computational screening of new high voltage insulation gases with low global warming potential[J].IEEETransactions on Dielectrics&Electrical Insulation,2015,22(1):296-302.
    [24]CHENG L,QIN Z,ZHANG C,et al.Theoretical investigation of mono-and di-chloro-substitient effects on the insulation and greenhouse properties of octafluorocyclobutane[J].Frontiers in Chemistry,2016,4:47.
    [25]WALLINGTON T J,PIVESSO B P,LIRA A M,et al.CH3Cl,CH2Cl2,CHCl3,and CCl4:infrared spectra,radioactive efficiencies,and global warming potentials[J].Journal of Quantitative Spectroscopy&Radiative Transfer,2016,174:56-64.
    [26]ZHANG C,SHI H,CHENG L,et al.First principles based computational scheme for designing new SF6 replacements[J].IEEETransactions on Dielectrics&Electrical Insulation,2016,23(5):2572-2578.
    [27]YU X,HOU H,WANG B.Prediction on dielectric strength and boiling point of gaseous molecules for replacement of SF6[J].Journal of Computational Chemistry,2017,38(10):721.
    [28]BART M,HARLAND P W,HUDSON J E,et al.Absolute total electron impact ionization cross-sections for perfluorinated hydrocarbons and small halocarbons[J].Physical Chemistry Chemical Physics,2001,3(5):800-806.
    [29]HUDSON J E,VALLANCE C,BART M,et al.Absolute electron-impact ionization cross sections for a range of C1 to C5chlorocarbons[J].Journal of Physics B:Atomic Molecular&Optical Physics,2001,34(15):3025-3039.
    [30]DEUTSCH H,BECKER K,JANEV R K,et al.Isomer effect in the total electron impact ionization cross section of cyclopropane and propene(C3H6)[J].Journal of Physics B Atomic,2000,33(24):L865.
    [31]MAIHOM T,SUKUBA I,JANEV R,et al.Electron impact ionization cross sections of beryllium and beryllium hydrides[J].European Physical Journal D,2013,67(1):2.
    [32]DEUTSCH H,SCHEIER P,MATT-LEUBNER S,et al.A detailed comparison of calculated and measured electron-impact ionization cross sections of atoms using the Deutsch-M?rk(DM)formalism[J].International Journal of Mass Spectrometry,2005,243(3):215-221.
    [33]SIMKA P,RANJAN N.Dielectric strength of C5 perfluoroketone[C]∥19th International Symposium on High Voltage Engineering.Pilsen,Czech Republic:[s.n.],2015:23-28.
    [34]XIONG J Y,LI X W,WU J,et al.Calculations of total electron-impact ionization cross sections for Fluoroketone C5F10O and Fluoronitrile C4F7N using modified Deutsch-M?rk(DM)formula[J].Journal of Physics D:Applied Physics,2017,50:445206-445212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700