用户名: 密码: 验证码:
结构相似单糖和二糖分子的太赫兹时域光谱研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Study of Terahertz Spectra of Monosaccharides and Disaccharides with Structural Similarities
  • 作者:陈涛 ; 蔡治华 ; 胡放荣 ; 殷贤华 ; 许川佩
  • 英文作者:CHEN Tao;CAI Zhi-hua;HU Fang-rong;YIN Xian-hua;XU Chuan-pei;School of Electronic Engineering and Automation, Guilin University of Electronic Technology;
  • 关键词:太赫兹时域光谱 ; D-葡萄糖 ; 乳糖一水化合物 ; 密度泛函理论
  • 英文关键词:Terahertz time-domain spectroscopy(THz-TDS);;D-glucose;;Lactose monohydrate;;Density functional theory(DFT)
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:桂林电子科技大学电子工程与自动化学院;
  • 出版日期:2019-03-15
  • 出版单位:光谱学与光谱分析
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(11574059,61841502);; 广西自然科学基金项目(2015GXNSFBA139252,2018GXNSFAA138093);; 广西自动检测技术与仪器重点实验室基金项目(YQ17102)
  • 语种:中文;
  • 页:GUAN201903005
  • 页数:7
  • CN:03
  • ISSN:11-2200/O4
  • 分类号:28-34
摘要
应用太赫兹时域光谱(THz-TDS)技术结合密度泛函理论(DFT)对两种结构相似的典型单糖和二糖物质(D-葡萄糖和乳糖一水化合物)在0.3~1.7 THz频段的太赫兹吸收光谱进行了实验与理论模拟研究。首先,利用THz-TDS技术分别测量了D-葡萄糖和乳糖一水化合物在0.3~1.7 THz频段的太赫兹特征吸收谱,获得了它们在此太赫兹频率范围内的指纹光谱数据,发现虽然乳糖的组成结构中含有葡萄糖,但THz-TDS技术对糖类分子的结构变化非常敏感,两种物质在所测太赫兹频段内分别表现出各自不同的太赫兹指纹吸收特性。然后,利用DFT方法分别对两种糖类物质单分子和多分子构型的低频集体振动模式进行了理论模拟计算,获得了D-葡萄糖晶胞构型和乳糖一水化合物单分子及晶胞构型的DFT模拟计算结果,并通过简正振动模式分解的PED分析方法,结合GaussView显示的分子振动形式,对两种糖类物质在太赫兹频段吸收峰的简正振动模式进行了指认,发现乳糖一水化合物的振动模式与羟基(—OH)、羟甲基(—CH_2OH)和糖苷键的振动模式密切相关,且D-葡萄糖在1.44 THz处及乳糖一水化合物在1.38 THz处出现的吸收峰主要是由分子间的相互作用(氢键和范德华力),尤其是相互作用较强的氢键引起。最后,利用约化密度梯度(RDG)分析,可视化地分析了D-葡萄糖和乳糖一水化合物分子间相互作用的位置、类型和强度,进一步证明了两种物质在太赫兹频段的特征吸收峰主要来源于分子间氢键网络支配的集体振动模式。研究结果表明, THz-TDS技术对糖类分子结构的细微变化有着敏锐的感知,虽然D-葡萄糖和乳糖一水化合物的分子结构相似,但太赫兹波对它们之间的结构差异十分敏感,两者在太赫兹波段的特征吸收谱表现出明显差异,这为THz-TDS技术结合DFT方法对糖类物质进行检测识别以及研究糖类分子间的相互作用提供了有价值的实验和理论参考。
        Experimental and theoretical investigations of the terahertz(THz) absorption spectra of two typical monosaccharides and disaccharides(D-glucose and lactose monohydrate), which have similar structures, were carried out by using terahertz time-domain spectroscopy(THz-TDS) and density functional theory(DFT). Firstly, the THz absorption spectra of D-glucose and lactose monohydrate were measured in the frequency range from 0.3 to 1.7 THz by THz-TDS system, and it was found that although the composition of lactose contained glucose, the THz-TDS was very sensitive to the structural changes of carbohydrates. The two carbohydrates showed their special THz fingerprint absorption characteristics in the measured THz band, respectively. Secondly, the vibration frequencies of these two carbohydrates in the THz band were calculated by using the DFT method, and the simulation results, including the unit cell configuration of D-glucose and the isolated-molecule and unit cell configuration of lactose monohydrate, were obtained. At the same time, combining molecular vibration animation displayed by GaussView and potential energy distributions(PED) analysis, the vibrational modes of these two carbohydrates in the THz band were assigned in detail. It was found that the vibrational modes of lactose monohydrate were closely related to the vibrational modes of hydroxyl(—OH), hydroxymethyl(—CH_2OH) and glycosidic bond. The absorption peaks of D-glucose at 1.44 THz and lactose monohydrate at 1.38 THz were mainly caused by intermolecular interactions(hydrogen bonds and van der Waals forces), especially the strong hydrogen bonds. Finally, using the reduced density gradient(RDG) analysis, the type and intensity of the intermolecular interactions of D-glucose and lactose monohydrate were visualized. The experimental results indicated that the THz-TDS technique has a keen perception for the subtle changes in the structure of carbohydrates, which provides an effective method for investigation of intermolecular interactions and detection of carbohydrates.
引文
[1]YAN Wei,MA Miao,DAI Ze-lin,et al(闫微,马淼,戴泽林,等).Acta Physica Sinica(物理学报),2017,66(3):037801.
    [2]YANG Jing-qi,LI Shao-xian,ZHAO Hong-wei,et al(杨静琦,李绍限,赵红卫,等).Acta Physica Sinica(物理学报),2014,13:105.
    [3]ZHANG Qi,FANG Hong-xia,ZHANG Hui-li,et al(张琪,方虹霞,张慧丽,等).Acta Chimica Sinica(化学学报),2015,73:1069.
    [4]LI Bin,LONG Yuan,LIU Hai-shun,et al(李斌,龙园,刘海顺,等).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2017,37(7):2165.
    [5]FANG Hong-xia,ZHANG Qi,ZHANG Hui-li,et al(方虹霞,张琪,张慧丽,等).Chemical Journal of Chinese Universities(高等学校化学学报),2015,12:2504.
    [6]Zheng Z P,Fan W H,Li H,et al.Journal of Molecular Spectroscopy,2014,296(4):9.
    [7]HUANG Rui-rui,ZHAO Guo-zhong,LIU Ying,et al(黄瑞瑞,赵国忠,刘影,等).Acta Optice Sinica(光学学报),2015,35(s2):s230001.
    [8]WANG Wen-ai,LIU Wei,YANG Xi,et al(王文爱,刘维,杨茜,等).Chinese Journal of Lasers(中国激光),2016,43(11):241.
    [9]FANG Hong-xia,ZHANG Qi,ZHANG Hui-li,et al(方虹霞,张琪,张慧丽,等).Acta Physico-Chimica Sinica(物理化学学报),2015,2:221.
    [10]Zhang Y F,Huang R Y,Wang J W,et al.Chemical Physics Letters,2014,612:223.
    [11]Jamroz M H.Spectrochimica Acta Part A Molecular&Biomolecular Spectroscopy.2013,114:220.
    [12]Johnson E R,Keinan S,Morisanchez P,et al.Journal of the American Chemical Society,2010,132(18):6498.
    [13]CHEN Tao,CAI Zhi-hua(陈涛,蔡治华).Laser&Optoelectronics Progress(激光与光电子学进展),2018,55(6):063001.
    [14]Chen T,Li Z,Yin X H,et al.Spectrochim Acta A,2016,153:586.
    [15]CHEN Xi-liang,CHEN Xin,ZHU Zhi-yong(陈西良,陈欣,朱智勇).Journal of Infrared and Millimeter Waves(红外与毫米波学报),2013,32(2):150.
    [16]TU Shan,ZHANG Wen-tao,XIONG Xian-ming,et al(涂闪,张文涛,熊显名,等).Acta Photonica Sinica(光子学报),2015,4:182.
    [17]YANG Wen-sheng,GOU Rui-jun,ZHANG Shu-hai,et al(杨文升,苟瑞君,张树海,等).Chinese Journal of Explosives&Propellants(火炸药学报),2015,38(6):72.
    [18]The Cambridge Crystallographic Data Centre:https://www.ccdc.cam.ac.uk/structures/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700