用户名: 密码: 验证码:
纳米金对绿豆(Phaseolus radiatus)种子萌发和幼苗生长的影响及其生理机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of gold nanoparticles on seed germination and seedling growth of mung bean(Phaseolus radiatus) and the underlying physiological mechanism
  • 作者:施夏明 ; 高超 ; 乔宁宁 ; 王晶晶 ; 朱金苗 ; 陈延松 ; 蔡旭冉 ; 徐德聪 ; 汪梦君 ; 徐忠东
  • 英文作者:SHI Xia-ming;GAO Chao;QIAO Ning-ning;WANG Jing-jing;ZHU Jin-miao;CHEN Yan-song;CAI Xu-ran;XU De-cong;WANG Meng-jun;XU Zhong-dong;Hefei Normal University;Huazhong Agricultural University;Anhui University;
  • 关键词:纳米金溶液 ; 绿豆 ; 植物毒性 ; 生理机制
  • 英文关键词:gold nanoparticles solution;;mung bean;;phytotoxicity;;physiological mechanism
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:合肥师范学院;华中农业大学;安徽大学;
  • 出版日期:2019-01-23 17:22
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.309
  • 基金:国家自然科学基金项目(31800049);; 国家级大学生双创训练计划项目(201814098057);; 安徽省公益性技术应用研究联动计划项目(1604f0704052);; 合肥师范学院与明光市校地产学研项目(2016CXYZB020);合肥师范学院校企合作项目(2017HX012)资助
  • 语种:中文;
  • 页:STXZ201904003
  • 页数:8
  • CN:04
  • ISSN:21-1148/Q
  • 分类号:21-28
摘要
以绿豆种子作为受试对象,通过种子萌发和幼苗栽培实验,探明纳米金胁迫对绿豆的植物毒性及生理机制的影响。结果表明:纳米金对绿豆种子萌发和幼苗生长具有显著抑制作用;随着纳米金浓度的升高,绿豆种子的发芽势、发芽率、发芽指数、活力指数,幼苗的高度、根长、鲜重均显著下降,根长和鲜重的下降幅度显著高于苗高和茎叶鲜重,幼苗死亡率则显著上升;纳米金对绿豆幼苗生理特征具有显著影响,随着纳米金浓度的增高,幼苗叶绿素含量和叶氮含量显著下降;幼苗茎叶组织和根组织的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性均表现出先升高后下降的趋势,丙二醛(MDA)含量显著上升,幼苗茎叶组织SOD、POD、CAT活性显著高于根组织,MDA含量显著低于根组织;纳米金对绿豆根部的植物毒性明显强于对茎叶的毒性,并随纳米金浓度升高而逐步增强;叶绿素含量和叶氮含量显著下降及氧化应激水平的变化是引起幼苗形态学变化的原因。研究结果为纳米金的安全应用和潜在生态风险评价提供了科学数据。
        The phytotoxicical effects of gold nanoparticles on Phaseolus radiatus and the underlying physiological mechanism were examined in a seed germination and seedling cultivation experiment.The results showed that gold nanoparticles inhibited seed germination and seedling growth of P.radiatus.Seed germination characteristics(including seed germination potential,germination rate,germination index,and vigor index) and seedling growth indices(including seedling height,root length,and fresh weight) significantly decreased with the increasing concentration of gold nanoparticles.The decrease in root length and root fresh weight was more significant than that in seedling height and shoot fresh weight.An increased mortality rate of seedlings was associated with an elevated concentration of gold nanoparticles.The physiological characteristics of P.radiatus seedlings were significantly affected by gold nanoparticles.With the increasing concentration of gold nanoparticles,chlorophyll and nitrogen contents in leaves decreased,superoxide dismutase(SOD),peroxidase(POD) and catalase(CAT) activities in both shoot and root increased first and then decreased,and malondialdehyde(MDA) contents increased.The activities of those three anti-oxygen enzymes in shoot were higher than those in root,while the MDA content in shoot was lower than that in root.In conclusion,the phytotoxicity of gold nanoparticles was stronger in root tissues than in shoot issues,and this effect was concentration-dependent.Decreased chlorophyll and nitrogen contents in leaves and altered oxidative stress levels contributed to the morphological changes of seedlings.Our findings provide an important insight for the safe application and potential ecological risk assessment of gold nanoparticles.
引文
邓贵荣,梅承芳,张宏涛,等.2017.醋酸钠对种子发芽和根伸长的生态效应研究.毒理学杂志,31(1):38-41.
    关佳莉,王刚,陈曦,等.2018.低氮营养对苗期菘蓝生长及活性成分的影响.生态学杂志,37(8):2331-2338.
    吕园园,王飞飞,汤莹,等.2017.纳米金棒诱导A549细胞产生自噬的机制研究.电子显微学报,36(3):279-285.
    罗潇宇,任垠安,高浩杰,等.2017.羧基化多壁碳纳米管对蛋白核小球藻的生物学效应研究.生态毒理学报,12(5):212-218.
    Abadeer NS,Murphy CJ.2016.Recent progress in cancer thermal therapy using gold nanoparticles.The Journal of Physical Chemistry C,120:4691-4716.
    Abaza AMH,Mahmoud GA,Elsheikh BB.2018.Effect of gold nanocomposite on the cytotoxicity of human cancer cell lines.Journal of Pharmacy and Pharmacology,6:729-741.
    Ang SH,Rambeli M,Thevarajah TM,et al.2016.Quantitative,single-step dual measurement of hemoglobin A1c and total hemoglobin in human whole blood using a gold sandwich immunochromatographic assay for personalized medicine.Biosensors and Bioelectronics,78:187-193.
    Asli S,Neumann PM.2009.Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport.Plant,Cell&Environment,32:577-584.
    Arora S,Sharma P,Kumar S,et al.2012.Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea.Plant Growth Regulation,66:303-310.
    Azad MB,Chen Y,Gibson SB.2009.Regulation of autophagy by reactive oxygen species(ROS):Implications for cancer progression and treatment.Antioxidants&Redox Signaling,11:777-790.
    Boisselier E,Astruc D.2009.Gold nanoparticles in nanomedicine:Preparations,imaging,diagnostics,therapies and toxicity.Chemical Society Reviews,38:1759-1782.
    Chen Y,Liu L,Xu L,et al.2017.Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods.Nano Research,10:2833-2844.
    Daraee H,Eatemadi A,Abbasi E,et al.2016.Application of gold nanoparticles in biomedical and drug delivery.Artificial Cells,Nanomedicine,and Biotechnology,44:410-422.
    Deng XY,Cheng J,Hu XL,et al.2015.Physiological and biochemical responses of a marine diatom Phaeodactylum tricornutum exposed to 1-octyl-3-methylimidazolium bromide.Aquatic Biology,24:109-115.
    Feichtmeier NS,Walther P,Leopold K.2015.Uptake,effects,and regeneration of barley plants exposed to gold nanoparticles.Environmental Science and Pollution Research,22:8549-8558.
    Jia HY,Liu L,Zhang XJ,et al.2009.Potential oxidative stress of gold nanoparticles by induced-NO releasing in serum.Journal of the American Chemical Society,131:40-41.
    Klaine SJ,Alvarez PJJ,Batley GE,et al.2008.Nanomaterials in the environment:Behavior,fate,bioavailability,and effects.Environmental Toxicology and Chemistry,27:1825-1851.
    Kovacic P,Somanathan R.2010.Biomechanisms of nanoparticles(toxicants,antioxidants and therapeutics):Electron transfer and reactive oxygen species.Journal of Nanoscience and Nanotechnology,10:7919-7930.
    Kumar A,Boruah BM,Liang XJ.2011.Gold nanoparticles:Promising nanomaterials for the diagnosis of cancer and HIV/AIDS.Journal of Nanomaterials,2011:1-17.
    Lead JR,Batley GE,Alvarez PJJ,et al.2018.Nanomaterials in the environment:Behavior,fate,bioavailability,and effects:An updated review.Environmental Toxicology and Chemistry,37:2029-2063.
    Li JJ,Hartono D,Ong CN,et al.2010.Autophagy and oxidative stress associated with gold nanoparticles.Biomaterials,31:5996-6003.
    Llevot A,Astruc D.2012.Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer.Chemical Society Reviews,41:242-257.
    Ma X,Geisler-Lee J,Deng Y,et al.2010.Interactions between engineered nanoparticles(ENPs)and plants:Phytotoxicity,uptake and accumulation.Science of the Total Environment,408:3053-3061.
    Mallidi S,Larson T,Tam J,et al.2009.Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer.Nano Letters,9:2825-2831.
    Manke A,Wang L,Rojanasakul Y.2013.Mechanisms of nanoparticle-induced oxidative stress and toxicity.Bio Med Research International,2013:1-15.
    Phogat N,Khan SA,Shankar S,et al.2016.Fate of inorganic nanoparticles in agriculture.Advanced Materials Letters,7:3-12.
    Purvis AC.1980.Sequence of chloroplast degreening in calamondin fruit as influenced by ethylene and Ag NO3.Plant Physiology,66:624-627.
    Sharma C,Singh M,Upmanyu V,et al.2018.Development and evaluation of a gold nanoparticle-based immunochromatographic strip test for the detection of canine parvovirus.Archives of Virology,163:2359-2368.
    Wan Y,Li J,Ren H,et al.2014.Physiological investigation of gold nanorods toward watermelon.Journal of Nanoscience and Nanotechnology,14:6089-6094.
    Zhang X.2015.Gold nanoparticles:Recent advances in the biomedical applications.Cell Biochemistry and Biophysics,72:771-775.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700