用户名: 密码: 验证码:
铁矿山矿石破碎能量与粒度关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy-size relationship of ore comminution in iron mine
  • 作者:甘德清 ; 高锋 ; 孙建珍 ; 赵海鑫 ; 宫良一
  • 英文作者:GAN Deqing;GAO Feng;SUN Jianzhen;ZHAO Haixin;GONG Liangyi;College of Mining Engineering,North China University of Science and Technology;Mining Corporation of Shougang Group Co.,Ltd.;
  • 关键词:矿石 ; 破碎系统 ; 破碎阶段 ; 单位能量 ; 粒度 ; 能量模型
  • 英文关键词:iron ore;;comminution system;;comminution stage;;specific energy;;particle size;;model of comminution energy
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:华北理工大学矿业工程学院;首钢集团有限公司矿业公司;
  • 出版日期:2019-04-04 10:08
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金(51374087,51774137);; 河北省自然科学基金(E2016209220)
  • 语种:中文;
  • 页:HEBX201904024
  • 页数:8
  • CN:04
  • ISSN:23-1235/T
  • 分类号:169-176
摘要
为研究铁矿石破碎能量与粒度的理论关系,将铁矿石从原矿破碎至精矿粒度的所有阶段看作一个破碎系统.首先对矿石破碎能量与粒度关系的基础理论进行整合分析,构建铁矿石破碎能量理论模型;然后通过现场调研的方法分析铁矿石破碎能量的变化特征,开展室内试验分析各破碎阶段铁矿石样品的粒度分布特征;最后采用数值拟合的方法分析铁矿石破碎系统单位能量随粒度的变化特征,使用矿山各破碎阶段的单位能量、矿石特征粒度和中值粒度验证铁矿石破碎能量理论模型的可靠性.研究结果表明,随着破碎阶段的变迁,铁矿山矿石破碎能量指数增加,且分布不合理,矿石粒度依次呈现指数函数分布、多项式函数分布和朗缪尔幂函数分布的特征,破碎系统单位能量与矿石粒度呈负相关的函数关系,在矿石中值粒度d_(50)为12 mm或特征粒度d_(80)为25 mm时,系统单位能量的变化速率出现转折.所构建的铁矿石破碎能量理论模型扩大了能量计算的粒度范围,可用于拟合铁矿石阶段破碎单位能量与入破粒度和产品粒度的函数公式,为铁矿山矿石破碎能量计算提供理论依据.
        All the comminution stages of iron ore from raw ore size to the concentrate size were taken as one comminution system to research the theoretical relationship between comminution energy and particle size. Firstly, the basic theories of relationship between comminution energy and particle size of ore were analyzed to establish a theoretical model of comminution energy of iron ore. Secondly, the change patterns of comminution energy were analyzed in site investigation, and particle size distribution characteristics in each comminution stage were analyzed in indoor experiments. Lastly, the change patterns of specific energy of the comminution system were analyzed with the method of numerical fitting, and the reliability of the theoretical model of comminution energy was verified with the data of the specific energy, characteristic size, and medium size of the iron ore in each comminution stage. Results showed that the comminution energy of iron ore increased exponentially, the distribution of comminution energy was unreasonable, and the product granularity was characterized by exponential distribution, polynomial function distribution, and Langmuir power function distribution in turn along with the alteration of comminution stage in the system. There was a negative correlation function between the specific energy of the comminution system and the particle size of ore. The change rate of specific energy of the comminution system turned into a turning point when the medium size was 12 mm or the characteristic size was 25 mm. The established theoretical model of comminution energy has larger range of particle size in energy calculation compared with classical models. It can be used to fit the function formulas between specific energy of stage comminution and the size of feed and product and provides theoretical basis for the calculation of comminution energy in iron mine.
引文
[1]张文清, 石必明, 穆朝民. 冲击载荷作用下煤岩破碎与耗能规律实验研究[J]. 采矿与安全工程学报, 2016, 33(2): 375ZHANG Wenqing, SHI Biming, MU Chaomin. Experimental research on failure and energy dissipation law of coal under impact load[J]. Journal of Mining & Safety Engineering, 2016, 33(2): 375. DOI:10.13545/j.cnki.jmse.2016.02.029
    [2]郭连军, 杨跃辉, 张大宁, 等. 冲击荷载作用下磁铁石英岩破碎能耗分析[J]. 金属矿山, 2014(8): 1GUO Lianjun, YANG Yuehui, ZHANG Daning, et al. Analysis on the fragmentation energy consumption of magnetite quartzite under impact loads[J]. Metal Mine, 2014(8): 1
    [3]TAVARES L M. Energy absorbed in breakage of single particles in drop weight testing[J]. Minerals Engineering, 1999, 12(1): 43. DOI:10.1016/S0892-6875(98)00118-6
    [4]胡振中, 庄亚明, 蔡天意, 等. 单颗粒煤岩冲击破碎能耗与粒度分布特性试验研究[J]. 煤炭学报, 2015, 40(S1): 230HU Zhenzhong, ZHUANG Yaming, CAI Tianyi, et al. Experimental study on energy consumption and particle size distribution of single particle coal under impact crushing[J]. Journal of China Coal Society, 2015, 40(S1): 230. DOI:10.13225/j.cnki.jccs.2014.1179
    [5]BUHL E, SOMMER F, POELCHAU M H, et al. Ejecta from experimental impact craters: particle size distribution and fragmentation energy[J]. Icarus, 2014, 237: 131. DOI:10.1016/j.icarus.2014.04.039
    [6]SAEIDI F, TAVARES L M, YAHYAEI M, et al. A phenomenological model of single particle breakage as a multi-stage process[J]. Minerals Engineering, 2016, 98: 90. DOI:10.1016/j.mineng.2016.07.006
    [7]STAMBOLIADIS T H. A contribution to the relationship of energy and particle size in the comminution of brittle particulate materials[J]. Minerals Engineering, 2002, 15(10): 707. DOI:10.1016/S0892-6875(2)00185-1
    [8]TSIBOUKIS S J. Study on the crushing and grinding of brittle materials[D]. Chania: Technical University of Crete, 1995
    [9]LIU Xuemin, ZHANG Man, HU Nan. Calculation model of coal comminution energy consumption[J]. Minerals Engineering, 2016, 92: 21. DOI:10.1016/j.mineng.2016.01.008
    [10]WEERASEKARA N S, LIU L X, POWELL M S. Estimating energy in grinding using DEM modeling[J]. Minerals Engineering, 2016, 85: 23. DOI:10.1016/j.mineng.2015.10.013
    [11]李占金, 乔国刚, 米雪玉, 等. 冀东磁铁矿石粉碎过程节能降耗研究[J]. 中国矿业大学学报, 2008, 37(5): 625LI Zhanjin, QIAO Guogang, MI Xueyu, et al. Energy savings during magnetite ore preparation in eastern Hebei province[J]. Journal of China University of Mining and Technology, 2008, 37(5): 625
    [12]WALKER D R, SHAW M C. A physical explanation of the empirical laws of comminution[J]. AIME Trans,1954, 199: 313
    [13]BOND F C. The third theory of comminution[J]. Transactions of AIME Mining Engineering, 1952, 193: 484
    [14]HUKKI R T. Proposal for a solomnic settlement between the theories of von Rittinger, Kick and Bond[J]. Transactions of the AIME, 1962, 220: 403
    [15]THOMAS A, FILIPPOV L O. Fractures, fractals and breakage energy of mineral particles[J]. International Journal of Mineral Process, 1999, 57(4): 285. DOI:10.1016/S0301-7516(99)00029-0
    [16]MORRELL S. An alternative energy-size relationship to that proposed by Bond for the design and optimisation of grinding circuits[J]. International Journal of Mineral Process, 2004,74(1/2/3/4): 133. DOI:10.1016/j.minpro.2003.10.002
    [17]MORRELL S. Predicting the overall specific energy requirement of crushing, high pressure grinding roll and tumbling mill circuits[J]. Minerals Engineering, 2009, 22(6): 544. DOI:10.1016/j.mineng.2009.01.005
    [18]沈保丰. 中国BIF型铁矿床地质特征和资源远景[J]. 地质学报, 2012, 86(9): 1376SHEN Baofeng. Geological characteristics and resource prospect of the BIF type iron ore deposits in China[J]. Acta Geological Sinica, 2012, 86(9): 1376
    [19]甘德清, 李晶, 许英霞, 等. 水厂铁矿磁铁矿矿石工艺矿物学研究[J]. 金属矿山, 2015(12): 98GAN Deqing, LI Jing, XU Yingxia, et al. Research of technological mineralogy of the magnetite ore of Shuichang iron deposit[J]. Metal Mine, 2015(12): 98
    [20]周仕学, 张鸣林. 粉体工程导论[M]. 北京: 科学出版社, 2015ZHOU Shixue, ZHANG Minglin. Powder engineering introduction[M]. Beijing: Science Publishing House, 2015
    [21]MARTINS S. Size-energy relationship in comminution, incorporating scaling laws and heat[J]. International Journal of Mineral Processing, 2016, 153: 29. DOI:10.1016/j.minpro.2016.05.020
    [22]LI Bo, LING Zongcheng, ZHANG Jiang, et al. Rock size-frequency distributions analysis at lunar landing sites based on remote sensing and in-situ imagery[J]. Planetary and Space Science, 2017, 146:30. DOI:10.1016/j.pss. 2017.08.008
    [23]FUERSTENAU D W, KAPUR P C. Newer energy-efficient approach to particle production by comminution[J]. Powder Technology, 1995, 82(1): 51. DOI:10.1016/0032-5910(94)02891-Q

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700