用户名: 密码: 验证码:
微纳操纵成像系统自适应模糊PI控制器设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of Adaptive Fuzzy PI Controller for Micro-nano Manipulated Imaging System
  • 作者:王一帆 ; 赵庆旭 ; 王盼 ; 吴文鹏 ; 胡贞
  • 英文作者:WANG Yi-fan;ZHAO Qing-xu;WANG Pan;WU Wen-peng;HU Zhen;School of Electronic Information Engineering, Changchun University of Science and Technology;
  • 关键词:微纳操纵成像系统 ; PI控制 ; 自适应模糊PI控制
  • 英文关键词:micro-nano manipulated imaging system;;PI control;;adaptive fuzzy PI control
  • 中文刊名:DGKQ
  • 英文刊名:Electronics Optics & Control
  • 机构:长春理工大学电子信息工程学院;
  • 出版日期:2019-04-01
  • 出版单位:电光与控制
  • 年:2019
  • 期:v.26;No.250
  • 基金:吉林省自然科学基金(201554)
  • 语种:中文;
  • 页:DGKQ201904022
  • 页数:5
  • CN:04
  • ISSN:41-1227/TN
  • 分类号:110-114
摘要
在传统PI控制微纳操纵成像系统的基础上实现参数实时在线调整。为了获得更好的控制效果,进行了自适应模糊PI控制的微纳操纵成像系统仿真研究。运用探针与样品之间原子力保持不变的原理对微纳操纵成像系统动态过程进行建模,加入模糊PI控制模块,建立了一套完整的系统仿真平台。设计了一种自适应模糊PI控制器,该控制器通过对电压值的误差和误差变化的判断进行模糊化推理,实现对控制参数的实时在线整定,以达到优化控制的目的;同时,利用Matlab进行仿真研究。结果表明,自适应模糊PI控制算法比传统PI控制算法能有效地改善系统的动态性能和稳态性能。
        Based on the traditional PI control micro-nano manipulated imaging system, the parameters can be online adjusted in real time. In order to obtain better control effects, the simulation of the micro-nano manipulated imaging system of adaptive fuzzy PI control is studied. The principle that the atomic force between the probe and the sample remains unchanged is used, the dynamic process of the micro-nano manipulated imaging system is modeled, and the fuzzy PI control module is added to establish a complete system simulation platform. An adaptive fuzzy PI controller is designed, which can adjust the control parameters online in real time by the fuzzy reasoning of the voltage error and error variations, so as to optimize the control process. At the same time, Matlab is used for simulation. The results show that the adaptive fuzzy PI control algorithm can improve the dynamic and steady-state performance of the system more effectively than the traditional PI control algorithm.
引文
[1]GIESSIBL F J.Advances in atomic force microscopy[J].Review of Modern Physics,2003,75(3):949-983.
    [2]BUTTERWORTH J,PAO L Y,ABRAMOVITCH D Y.Architectures for tracking control in atomic force microscopes[C]//Proceedings of the IFAC World Congress,2008:8236-8250.
    [3]ABRAMOVITCH D Y,ANDERSSON S B,PAO L Y,et al.A tutorial on the mechanisms,dynamics,and control of atomic force microscopes[C]//American Control Conference,2007:3488-3502.
    [4]RANA M S,POTA H R,PETERSEN I R.A survey of methods used to control piezoelectric tube scanners in high-speed AFM imaging[J].Asian Journal of Control,2018,20(4):1379-1399.
    [5]CHEN Y F,LI Y Z,SHAN G Q,et al.Design and implementation of a novel horizontal AFM probe utilizing a quartz tuning fork[J].International Journal of Precision Engineering&Manufacturing,2018,19(1):39-46.
    [6]梁军,符雪桐,吕勇哉.自适应PID控制—I.基本原理与算法[J].浙江大学学报:自然科学版,1994,28(5):523-529.
    [7]宋云鹏.基于微悬臂梁弯曲法的微尺度力学特性测量技术研究[D].天津:天津大学,2015.
    [8]张金龙,徐慧,刘京南,等.基于模糊神经网络的精密角度定位PID控制[J].仪器仪表学报,2012,33(3):549-554.
    [9]曹海源,黎伟,初华,等.基于模糊PID算法的红外面源黑体设计[J].电光与控制,2018,25(7):92-95.
    [10]张开生,折娇.基于模糊理论的蒸汽加热罐温度控制系统的设计[J].传感器与微系统,2012,31(2):118-120.
    [11]鄢志丹.基于AFM的纳米操作系统主控器及其反馈模块的开发[D].天津:天津大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700