用户名: 密码: 验证码:
铝合金板与混凝土的粘贴粘结强度研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Interfacial Bond Strength Between Aluminum Alloy Plate and Concrete
  • 作者:杨立军 ; 邓志恒 ; 陈卫 ; 杨海峰
  • 英文作者:YANG Lijun;DENG Zhiheng;CHEN Wei;YANG Haifeng;Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone,Hunan Univ.of Arts and Sci.;College of Civil and Architecture Eng.,Hunan Univ.of Arts and Sci.;College of Civil Eng.and Architecture,Guangxi Univ.;
  • 关键词:铝合金板 ; 混凝土 ; 粘贴粘结强度 ; 面内单剪试验 ; 剪应力
  • 英文关键词:aluminum alloy plate;;concrete;;interfacial bond strength;;in-plane shear test;;shear stress
  • 中文刊名:SCLH
  • 英文刊名:Advanced Engineering Sciences
  • 机构:湖南文理学院洞庭湖生态经济区建设与发展省级协同创新中心;湖南文理学院土木建筑工程学院;广西大学土木建筑工程学院;
  • 出版日期:2019-04-30 10:39
  • 出版单位:工程科学与技术
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金项目(51478126);; 国家自然科学地区基金项目(51768004);; 湖南省高等学校“双一流”建设项目(湘教通[2018]469)
  • 语种:中文;
  • 页:SCLH201903013
  • 页数:7
  • CN:03
  • ISSN:51-1773/TB
  • 分类号:105-111
摘要
为了在提高加固钢筋混凝土梁承载力的同时具有很好的延性和耗能能力,特别是满足侵蚀环境及寒冷环境中加固工程的需要,采用铝合金板加固钢筋混凝土梁是一个很好的解决办法。铝合金板通过粘贴层将力传给钢筋混凝土梁,故铝合金板与混凝土的粘贴粘结性能决定了铝合金板加固钢筋混凝土梁的效果。铝合金板与混凝土的粘贴粘结强度作为铝合金板加固钢筋混凝土梁连接设计的基础,对其开展试验和理论研究。开展105个试件的铝合金板与混凝土面内单剪试验发现:对粘贴界面没有进行粗糙处理的试件发生了界面剥离破坏,其他试件均发生了混凝土层剥离破坏;界面剥离破坏的粘结性能远差于混凝土层剥离破坏,说明了对粘贴界面进行处理的必要性。通过试验得到铝合金板和混凝土连接的极限粘结荷载,根据铝合金板正应力的变化率与粘贴界面剪应力的关系,得到剪应力的分布曲线和有效粘结长度;假设剪应力沿有效粘结长度处处相等,得到了铝合金板与混凝土的粘贴试验粘结强度,并基于此讨论了界面处理、混凝土强度、铝合金板宽度、厚度和粘贴长度等因素对试验粘结强度的影响。结合试验数据的统计回归分析,提出计算铝合金板与混凝土的粘贴粘结强度的修正Niedermeier模型,得到了铝合金板与混凝土的有效粘结长度和粘贴粘结强度的理论计算公式,其理论值和试验值吻合较好,误差最大值为8.98%,平均值为0.004,标准差为0.041。研究成果为铝合金板加固钢筋混凝土梁的粘贴设计提供了理论基础。
        RC beam strengthened with aluminum alloy plate is a good solution for the purpose of increasing bearing capacity of concrete beam. At the same time, the ductility and energy-dissipating capacity will also be better, especially satisfying the reinforcement engineering at erosion and cold environments. As the stress of aluminum alloy plate is transmitted to the RC beam through the bonding layer, the strengthening effect of the RC beam strengthened with aluminum alloy plate is determined by the bonding property between aluminum alloy plate and concrete. As the study foundation of RC beam strengthened with aluminum alloy plate, the experimental and theoretical studies on interfacial bond strength between aluminum alloy plate and concrete were given. In-plane shear tests of 105 specimens were carried out. Specimens which were not treated on the bonding interface were failured in the form of interfacial debonding. The other specimens were failured in the form of being stripped of concrete layer. The bonding property of the interfacial debonding was much worse than the stripping of the concrete layer, indicating the necessity of treating on the bonding interface. The ultimate bond loads between aluminum alloy plate and concrete were got. Shear stresses distribution curves and effective bond length were obtained according to the relationship between the change rate of normal stress of aluminum alloy plate and interfacial shear stress. Assuming that the shear stress is the same along the effective bond length, the bonding strength between aluminum alloy plate and concrete was obtained. The influencing factors on interfacial bond strength, such as interface treatment, concrete strength, width and thickness of aluminum alloy plate and bonding length, were discussed. Based on statistics regression analysis of experiment data, the modified Niedermeier model of interfacial bond strength between aluminum alloy plate and concrete was put forward. The theoretical calculation formula on effective bond length and bonding strength was obtained. The theoretical values of bonding strength are in good agreement with the testing values. The largest error is 8.98%, the average error is 0.004, the standard deviation is 0.041.
引文
[1]Kissell J R,Ferry R L.Aluminum structures:A guide to their specifications and design[M].New York:Wiley,2002.
    [2]Xing Guohua,Xie Pengyu,Song Qixi,et al.Behavior of reinforced concrete beams strengthened by external prestressed aluminum alloy bars[J].Bulletin of the Chinese Ceramic Society,2016,35(3):831-836.[邢国华,谢鹏宇,宋启玺,等.铝合金筋体外预应力加固混凝土梁受力性能研究[J].硅酸盐通报,2016,35(3):831-836.]
    [3]Rasheed H A,Abdalla J,Hawileh R,et al.Flexural behavior of reinforced concrete beams strengthened with externally bonded aluminum alloy plates[J].Engineering Structures,2017,147:473-485.
    [4]Abdalla J A,Abu-Obeidah A,Hawileh R A.Behavior of shear deficient reinforced concrete beams with externally bonded aluminum alloy plates[C].The 2011 World Congress on Advances in Structural Engineering and Mechanics.Seoul,2011.
    [5]Abdalla J A,Abu-Obeidah A S,Hawileh R A,et al.Shear strengthening of reinforced concrete beams using externally bonded aluminum alloy plates:An experimental study[J].Construction&Building Materials,2016,128:24-37.
    [6]Obeidah A A.Behavior of shear deficient reinforced concrete beams with externally bonded aluminum plates[D].New Jersey:The State University of New Jersey,2012.
    [7]Liu Hongbin.Theoretical and experimental study on failure modes of reinforced concrete beams with aluminum alloy[D].Harbin:Harbin Institute of Technology,2011.[柳红滨.铝合金加固钢筋混凝土梁破坏模式的理论与试验研究[D].哈尔滨:哈尔滨工业大学,2011.]
    [8]Tu Guigang.Experimental investigation and numerical analysis of reinforced concrete beams stiffened using aluminum alloy[D].Harbin:Harbin Institute of Technology,2011.[涂桂刚.铝合金加固钢筋混凝土梁试验研究及数值分析[D].哈尔滨:哈尔滨工业大学,2011.]
    [9]Song Qixi.Study on the flexural performance of reinforced concrete beams strengthened by prestressed aluminum alloy wire[D].Xi’an:Chang’an University,2015.[宋启玺.铝合金筋体外预应力加固混凝土梁受力性能研究[D].西安:长安大学,2015.]
    [10]Abu-Obeidah A,Hawileh R A,Abdalla J A.Finite element analysis of strengthened RC beams in shear with aluminum plates[J].Computers and Structures,2015,147:36-46.
    [11]Zhang Pu,Zhu Hong,Chen Quan,et al.Experimental analys-is of shear performance of wet-bonding interface between FRP plate and concrete[J].Journal of Civil,Architectural&Environmental Engineering,2011,33(3):74-79.[张普,朱虹,陈泉,等.FRP板与混凝土湿粘结界面剪切性能试验研究[J].土木建筑与环境工程,2011,33(3):74-79.]
    [12]Hao Haixia,Zhang Jianren,Gao Yong,et al.Simplified analysis on bond performance of near-surface mounted CFRP-concrete interface[J].China Journal of Highway and Transport,2015,28(4):52-59.[郝海霞,张建仁,高勇,等.表层嵌贴CFRP-混凝土界面粘结性能简化分析[J].中国公路学报,2015,28(4):52-59.]
    [13]Chen Guangming,Liu Di,Li Yunlei,et al.Bond behavior between shear strengthening FRP and concrete:An experimental study[J].Engineering Mechanics,2015,32(7):164-175.[陈光明,刘迪,李云雷,等.抗剪加固FRP与混凝土界面粘结性能的试验研究[J].工程力学,2015,32(7):164-175.]
    [14]Zhong Zhengqiang,Yu Yi,Liu Bo.Experimental study on influence of adhesive layer thickness on bond stress of concrete beams strengthened with prestressed CFRP[J].China Journal of Highway and Transport,2014,27(11):55-62.[钟正强,喻奕,刘波.胶层厚度对预应力CFRP加固混凝土梁粘结应力的影响试验[J].中国公路学报,2014,27(11):55-62.]
    [15]Wang Yutian,Jiang Fuxiang,Zhao Tiejun,et al.Bond properties of CFRP-high performance concrete subjected to freezethaw cycles[J].Journal of Civil and Architectural&Environmental Engineering,2015,37(2):85-91.[王玉田,姜福香,赵铁军,等.冻融循环下CFRP-高性能混凝土的粘结性能[J].土木建筑与环境工程,2015,37(2):85-91.]
    [16]Wang Xiaolu,Zha Xiaoxiong,Zhang Xuchen.Bond behavior of FRP rebar and concrete at elevated temperature[J].Journal of Harbin Institute of Technology,2013,45(6):8-15.[王晓璐,査晓雄,张旭琛.高温下FRP筋与混凝土的粘结性能[J].哈尔滨工业大学学报,2013,45(6):8-15.]
    [17]Ju Zhu,Wang Zhenqing,Li Xiaoji,et al.The experimental investigation of bond behavior between GFRP bar and concrete in high temperature[J].Journal of Harbin Institute of Technology,2012,33(11):1351-1357.[鞠竹,王振清,李晓霁,等.高温下GFRP筋和混凝土粘结性能的实验研究[J].哈尔滨工程大学学报,2012,33(11):1351-1357.]
    [18]Niedermeier R.Stellungnahme zur richtlinie für das verkleben von betonbauteilen durch ankleben von stahllaschen-entwurf[R].Munich:Technische Universit?t München,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700