用户名: 密码: 验证码:
电极长度对纳秒脉冲同轴介质阻挡放电特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Electrode Length on Characteristics of Coaxial Dielectric Barrier Discharge Driven by Nanosecond Pulsed Power Supply
  • 作者:苗传润 ; 刘峰 ; 王乾 ; 梅丹华 ; 方志
  • 英文作者:MIAO Chuanrun;LIU Feng;WANG Qian;MEI Danhua;FANG Zhi;College of Electrical Engineering and Control Science, Nanjing Tech University;
  • 关键词:介质阻挡放电 ; 放电特性 ; 纳秒脉冲 ; 电极结构 ; 同轴反应器 ; 能量效率 ; 热量损失
  • 英文关键词:dielectric barrier discharge;;discharge characteristics;;nanosecond pulse;;electrode structure;;coaxial reactor;;energy efficiency;;heat loss
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:南京工业大学电气工程与控制科学学院;
  • 出版日期:2019-06-20 17:25
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.319
  • 基金:国家自然科学基金(51777091);; 江苏省重点研发计划(产业前瞻与共性关键技术)(BE2017023)~~
  • 语种:中文;
  • 页:GDYJ201906035
  • 页数:10
  • CN:06
  • ISSN:42-1239/TM
  • 分类号:271-280
摘要
同轴介质阻挡放电(DBD)在环境保护和能源领域具有重要的应用价值,而其电极结构是影响其放电特性的关键因素之一。为此采用纳秒脉冲电源驱动同轴双阻挡介质反应器,研究外电极长度对其放电特性的影响。利用电学、光学和温度测量诊断了放电特性,依据等效电气模型分离得到放电各电气参量,并进一步得到放电功率和能量效率,研究了不同电极结构下的放电均匀性、放电功率、能量效率的变化规律,并通过建立热传导模型分析了纳秒脉冲同轴双阻挡介质反应器运行温度及能量损失。结果表明:纳秒脉冲同轴双介质阻挡放电在不同外电极长度下均表现为均匀放电形式,且受外电极长度影响较小;随外电极长度的增大,反应器气隙平均放电功率及能量效率均增大;反应器温度随运行时间增加而增加,运行900 s后反应器温度达到饱和值;电压24 kV、外电极长230 mm时反应器气隙平均放电功率最高可达34.3 W,能量效率为71.3%,此时,反应器运行900 s后,运行温度为80.1℃,内介质层温度为135.3℃;通过热传导模型分析得到同轴DBD反应器能量损失途径为热量损失(热量损耗),随长度的增大,运行温度与内介质层温度升高,反应器热量损耗率降低。
        Coaxial dielectric barrier discharge(DBD) is very important in environmental protection and energy fields. The electrode structure is one of the key factors to influence the discharge characteristics of the coaxial DBD reactor. We developed a coaxial double dielectric barrier reactor driven by a nanosecond(ns) pulsed power supply, and investigated the influence of outer electrode length on characteristics of coaxial DBD. The electrical, optical, and temperature diagnoses methods were adopted to analyze the discharge characteristics. The electrical parameters of the coaxial DBD were obtained using an equivalent electrical model. The power deposition and energy efficiency with various electrode structures were further calculated. Moreover, the discharge uniformity, discharge power and energy efficiency with various electrode structures were studied, and the operation temperature and heat loss of the coaxial DBD reactor were analyzed by a heat conduction model. The results show that ns pulsed coaxial DBDs with various outer electrode lengths are uniform and the effect of the outer electrode length on the discharge uniformity is negligible. With the increase of the outer electrode length, the energy efficiency and the average discharge power across the air gap increase accordingly. With the increase of operation time, the operation temperature increases first and reaches a saturated value after 900 s operation. At 230 mm outer electrode length and 24 kV applied voltage, the energy efficiency of the coaxial DBD is 71.3% and the average discharge power across the air gap is 34.3 W. The corresponding operation temperature of the coaxial DBD reaches 80.1 ℃after 900 s operation and the temperature of the inner dielectric barrier is 135.3 ℃. Analysis with the heat conduction model shows that the energy loss of the reactor presents the heat loss. The operation temperature and the temperature of the inner dielectric barrier increase with the increase of the outer electrode length. The heat loss rate decreases with the outer electrode length.
引文
[1]方志,谈坚,杨静,等.多针-平板电极气液两相介质阻挡放电特性的影响[J].高电压技术,2016,42(3):731-738.FANG Zhi,TAN Jian,YANG Jing,et al.Discharge characteristic of multiple needles to plate dielectric barrier discharge in gas-liquid mixture[J].High Voltage Engineering,2016,42(3):731-738.
    [2]董冰岩,邓苇,孙宇,等.高压脉冲放电协同纳米催化剂降解苯酚废水[J].高电压技术,2017,43(8):2645-2652.DONG Bingyan,DENG Wei,SUN Yu,et al.Phenol wastewater treatment by high voltage pulse discharge combined with nanometer catalyst[J].High Voltage Engineering,2017,43(8):2645-2652.
    [3]李清泉,郝玲艳.沿面介质阻挡放电等离子体及其应用[J].高电压技术,2016,42(4):1079-1090.LI Qingquan,HAO Yanling.Surface dielectric barrier discharge plasma and its applications[J].High Voltage Engineering,2016,42(4):1079-1090.
    [4]KIM D J,SHIM Y K,PARK J,et al.Demonstration of organic volatile decomposition and bacterial sterilization by miniature dielectric barrier discharges on low-temperature cofired ceramic electrodes[J].Japanese Journal of Applied Physics,2016,55(4):040302.
    [5]方志,张波,周若瑜,等.HMDSO添加对大气压Ar等离子体射流阵列放电特性的影响[J].高电压技术,2017,43(6):1775-1783.FANG Zhi,ZHANG Bo,ZHOU Ruoyu,et al.Effect of HMDSO addition on discharge characteristics of atmospheric pressure plasma jet array in argon[J].High Voltae Engineering,2017,43(6):1775-1783.
    [6]龙川,王黎明,罕奇,等.介质阻挡放电对RTV涂料憎水性的影响[J].高电压技术,2018,44(2):568-574.LONG Chuan,WANG Liming,DAI Hanqi,et al.Effect of dielectric barrier discharge on hydrophobicity of RTV coatings[J].High Voltage Engineering,2018,44(2):568-574.
    [7]高远,张帅,刘峰,等.脉冲介质阻挡放电等离子体催化CH4直接转化[J].电工技术学报,2017,32(2):61-69.GAO Yuan,ZHANG Shuai,LIU Feng,et al.Plasma enhanced CH4direct conversion in pulsed dielectric barrier discharges[J].Transactions of China Electrotechnical Society,2017,32(2):61-69.
    [8]MEI D H,ASHFORD B,HE Y L,et al.Plasma-catalytic reforming of biogas over supported Ni catalysts in a dielectric barrier discharge reactor:effect of catalyst supports[J].Plasma Processes and Polymers,2016,14(6):1-13.
    [9]吴淑群,聂兰兰,卢新培.大气压非平衡等离子体射流[J].高电压技术,2015,41(8):2602-2624.WU Shuqun,NIE Lanlan,LU Xinpei.Atmospheric-pressure non-equilibrium plasma jets[J].High Voltage Engineering,2015,41(8):2602-2624.
    [10]周杨,姜慧,章程,等.纳秒和微秒脉冲激励表面介质阻挡放电特性对比[J].高电压技术,2014,40(10):3091-3097.ZHOU Yang,JIANG Hui,ZHANG Cheng,et al.Comparison of discharge characteristics in surface dielectric barrier discharge driven by nanosecond and microsecond pulsed powers[J].High Voltage Engineering,2014,40(10):3091-3097.
    [11]张远涛,孙典昂,焦元德.不同介质条件下大气压脉冲放电特性的数值仿真研究[J].高电压技术,2015,41(6):2037-2046.ZHANG Yuantao,SUN Dian’ang,JIAO Yuande.Numerical study on discharge characteristics of atmospheric dielectric barrier discharges driven by pulsed voltages with various barriers[J].High Voltage Engineering,2015,41(6):2037-2046.
    [12]邵涛,章程,王瑞雪,等.大气压脉冲气体放电与等离子体应用[J].高电压技术,2016,42(3):685-705.SHAO Tao,ZHANG Cheng,WANG Ruixue,et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J].High Voltage Engineering,2016,42(3):685-705.
    [13]XIAO H P,DU X,WANG L.Numerical optimization research on the dielectric barrier discharge for NOx removal[J].Advanced Materials Research,2012,356-360:1238-1243.
    [14]董冰岩,甘青青,孙宇,等.高压脉冲放电协同复合型催化剂去除甲醛的实验[J].电工技术学报,2017,32(8):108-113.Dong Bingyan,GAN Qingqing,SUN Yu,et al.Degradation of formaldehyde by high voltage pulse discharge combined with compound catalyst[J].Transactions of China Electrotechnical Society,2017,32(8):108-113.
    [15]ZHANG X,LEE B J,HONG G I,et al.Ozone production with dielectric barrier discharge:effects of power source and humidity[J].IEEETransactions on Plasma Science,2016,44(10):2288-2296.
    [16]MEI D H,TU X.Conversion of CO2 in a cylindrical dielectric barrier discharge reactor:effects of plasma processing parameters and reactor design[J].Journal of CO2 Utilization,2017,19:68-78.
    [17]ANAGHIZI S J,TALEBIZADEH P,RAHIMZADEH H,et al.The configuration effects of electrode on the performance of dielectric barrier discharge reactor for NOx removal[J].IEEE Transactions on Plasma Science,2015,43(6):1944-1953.
    [18]FANG Z,QIU Y C,SUN Y Z,et al.Experimental study on discharge characteristics and ozone generation of dielectric barrier discharge in a cylinder-cylinder reactor and a wire-cylinder reactor[J].Journal of Electrostatics,2008,66(7):421-426.
    [19]汪涛,孙保民,肖海平,等.不同间隙条件下同轴型介质阻挡放电的模拟与实验研究[J].真空科学与技术学报,2013,33(3):257-261.WANG Tao,SUN Baomin,XIAO Haiping,et al.Influence of gap-width on NOx removal by dielectric barrier discharge[J].Chinese Journal of Vacuum Science and Technology,2013,33(3):257-261.
    [20]SUN B M,WANG T,YANG B,et al.Effect of electrode configuration on NO removal in a coaxial dielectric barrier discharge reactor[J].Journal of Chemical Engineering of Japan,2013,46(11):1-5.
    [21]LIANG W J,FANG H P,LI J,et al.Performance of non-thermal DBDplasma reactor during the removal of hydrogen sulfide[J].Journal of Electrostatics,2011,69(3):206-213.
    [22]LIU S,NEIGER M.Electrical modelling of homogeneous dielectric barrier discharges under an arbitrary excitation voltage[J].Journal of Physics D:Applied Physics,2003,36(24):3144-3150.
    [23]方志,解向前,邱毓昌.大气压空气中均匀介质阻挡放电的产生及放电特性[J].中国电机工程学报,2010,30(28):126-132.FANG Zhi,XIE Xiangqian,QIU Yuchang.Generation and characteristics of the homogeneous dielectric barrier discharge in air under atmospheric pressure[J].Proceedings of the CSEE,2010,30(28):126-132.
    [24]ZHANG C,SHAO T,MA H,et al.Experimental study on conduction current of positive nanosecond-pulse diffuse discharge at atmospheric pressure[J].IEEE Transactions on Dielectrics and Electrical Insulation,2013,20(4):1304-1314.
    [25]VALDIVIA-BARRIENTOS R,PACHECO-SOTELO J,PACHECO-PACHECO M,et al.Analysis and electrical modelling of a cylindrical DBD configuration at different operating frequencies[J].Plasma Sources Science and Technology,2006,15:237-245.
    [26]PIPA A V,HODER T,KOSKULICS J,et al.Experimental determination of dielectric barrier discharge capacitance[J].Review of Scientific Instruments,2012,83(7):075111.
    [27]马云飞,章程,牛宗涛,等.微秒和纳秒脉冲激发介质阻挡放电传输电荷特性对比[J].高电压技术,2015,41(9):2979-2987.MA Yunfei,ZHANG Cheng,NIU Zongtao,et al.Comparison for characteristics of transported charges in dielectric barrier discharge driven by microsecond and nanosecond pulsed powers[J].High Voltage Engineering,2015,41(9):2979-2987.
    [28]LIU F,HUANG G,GANGULY B.Plasma excitation dependence on voltage slew rates in 10~200 torr argon-nitrogen gas mixture DBD[J].Plasma Sources Science and Technology,2010,19(19):045017.
    [29]FRIDMAN A,CHIROKOV A,GUTSOL A.Non-thermal atmospheric pressure discharges[J].Journal of Physics D:Applied Physics,2005,38(2):R1-R24.
    [30]SADAT H,DUBUS N,DEZ V L,et al.A simple model for transient temperature rise and fall in a dielectric barrier discharge reactor after ignition and shut down[J].Journal of Electrostatics,2010,68(1):27-30.
    [31]SADAT H,DUBUS N,PINARD L,et al.Conduction heat transfer in a cylindrical dielectric barrier discharge reactor[J].Applied Thermal Engineering,2009,29(5/6):1259-1263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700