用户名: 密码: 验证码:
煤体理化性质对其孔隙结构和甲烷吸附性能影响的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of physicochemical properties of coals on pore morphology and methane adsorption: a perspective
  • 作者:付学祥 ; 张登峰 ; 降文萍 ; 伦增珉 ; 赵春鹏 ; 王海涛 ; 李艳红
  • 英文作者:FU Xuexiang;ZHANG Dengfeng;JIANG Wenping;LUN Zengmin;ZHAO Chunpeng;WANG Haitao;LI Yanhong;Faculty of Chemical Engineering,Kunming University of Science and Technology;Xi'an Research Institute of China Coal Technology & Engineering Group Corporation;Exploration and Production Research Institute,SINOPEC;State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development;
  • 关键词: ; 理化性质 ; 孔隙结构 ; 甲烷 ; 吸附(作用)
  • 英文关键词:coal;;physicochemical properties;;pore morphology;;methane;;adsorption
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:昆明理工大学化学工程学院;中煤科工集团西安研究院有限公司;中国石油化工股份有限公司石油勘探开发研究院;页岩油气富集机理与有效开发国家重点实验室;
  • 出版日期:2019-06-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.333
  • 基金:国家自然科学基金(41762013,41302132);; 中国石化页岩油气勘探开发重点实验室2018年度开放基金(G5800-18-ZS-KFZY007);; “十三五”国家科技重大专项子课题(2016ZX05060002)
  • 语种:中文;
  • 页:HGJZ201906020
  • 页数:12
  • CN:06
  • ISSN:11-1954/TQ
  • 分类号:182-193
摘要
煤层气主要成分为甲烷(CH_4),其主要以吸附态形式存在于煤层中。明确煤体理化性质和煤体孔隙结构及CH_4吸附性能间构效关系,对于高效开采CH_4资源至为关键。为此,本文阐明了煤体理化性质对其孔隙结构和CH_4吸附性能的作用规律,并指出了后续研究趋势。分析表明:煤体微孔结构和其CH_4吸附容量之间呈正线性相关性;煤体介/大孔主要影响CH_4在煤层内部的吸附/扩散速率。具有墨水瓶形孔或富含镜质体的煤体通常具有较强CH_4吸附性能。煤中矿物质和水分对煤体吸附性能产生不利影响。煤中小分子有机物的抽提能够提高煤体孔隙表面积和孔容积,进而提升煤体吸附性能。为了深入研究煤体理化性质及其吸附性能的作用规律,后续需开展以下工作:研究煤体孔隙结构参数和煤体吸附/解吸性能之间的耦合作用关系;利用多重分形理论精确揭示煤体内复杂的孔隙结构信息;优化并建立考虑煤体非均质性的BET和BJH等孔隙结构参数计算模型;以煤基质表面含氧官能团在煤体孔隙内部的赋存空间为切入点,阐明煤体官能团和孔隙结构对其CH_4吸附性能的协同作用规律;从理论模拟和实验科学入手,阐明煤层中水分对煤体孔隙结构的影响;建立更为科学的含水煤体吸附性能评价方法。
        The coal-bed methane(CH_4) in coal reservoirs mainly exists in form of adsorbed state. Study on influences of physicochemical properties of coals on their pore morphology and CH_4 adsorption performance is important for effectively recovering CH_4. In this review, the influences of physicochemical properties of coals on their pore structure and CH_4 adsorption, and the future research trend were addressed. The results showed the positive linear correlation between coal micropore parameters and their CH_4 adsorption capacity. The meso-and macropores of coal mainly influenced the adsorption/diffusion rate of CH_4 within coals. The coals rich in ink-shaped pores or vitrinite always exhibited superior CH_4 adsorption performance. In general, the minerals and moisture decreased coal adsorption ability. The extraction of small organic compounds from coal matrix was helpful to increase pore surface area and volume of coals and further enhance their adsorption performance. To gain further insight into coal physicochemical properties dependences of pore morphology and CH_4 adsorption, the coupling relationship between coal pore structure parameters and fluid adsorption/desorption, and the elaboration of coal complex pore morphology based on multi-fractal theory were needed to study. Furthermore, to accurately estimate pore structure parameters of coal, the BET model and BJH model fully considering coal heterogeneity were needed. Study on occurrence space regarding oxygen-containing functional groups on coal matrix in coal pore space to address the cooperative effect of functional groups and pore morphology on CH_4 adsorption was also required. Finally, study on the influences of moisture on coal pore structure and adsorption performance for CH_4 from experiment and theory analysis, and experimental method for determining moisture-containing coal adsorption performance, should also be concentrated on.
引文
[1]常广涛,王一帆,董特特.煤层气吸附解吸研究进展综述[J].石化技术,2015,22(7):125-126.CHANG G T,WANG Y F,DONG T T. An overview of research progress of adsorption and desorption of coal-bed methane[J].Petrochemical Technology,2015,22(7):125-126.
    [2] ZHANG D F,ZHANG J,HUO P L,et al. Influences of SO2,NO,and CO2exposure on pore morphology of various rank coals:implications for coal-fired flue gas sequestration in deep coal seams[J]. Energy&Fuels,2016,30(7):5911-5921.
    [3] WANG Q Q,ZHANG D F,WANG H H,et al. Influence of CO2exposure on high-pressure methane and CO2adsorption on various rank coals:implications for CO2sequestration in coal seams[J]. Energy&Fuels,2015,29(6):3785-3795.
    [4]周国富,杨加宁.煤炭消费、经济增长与废气排放:基于中国的实证研究[J].统计教育,2008,11:3-8.ZHOU G F,YANG J N. An empirical study on the relationships among coal consumption, economic growth and the emission of exhaust gas in China[J]. Statistical Thinktank,2008,11:3-8.
    [5]张锦,张登峰,霍培丽,等.煤基质表面官能团对二氧化碳及甲烷吸附性能作用规律的研究进展[J].化工进展,2017,36(6):1977-1988.ZHANG J,ZHANG D F,HUO P L,et al. Functional groups on coal matrix surface dependences of carbon dioxideand methane adsorption:a perspective[J]. Chemical Industry and Engineering Progress,2017,36(6):1977-1988.
    [6] SING K S W,EVERETT D H,HAUL R A W,et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure&Application Chemistry,1985,57(4):603-619.
    [7] CAI Y D,LIU D M,PAN Z J,et al. Pore structure and its impact on CH4adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel,2013,103:258-268.
    [8] WANGGC,JUYW,YANZF,etal.Porestructurecharacteristicsofcoalbearingshaleusingfluidinvasionmethods:acasestudyintheHuainanHuaibei coalfield in China[J]. Marine and Petroleum Geology,2015,62:1-13.
    [9] ZHANGZ,QINY,ZHUANGXG,etal.Poropermcharacteristicsofhighrank coals from Southern Qinshui basin by mercury intrusion, SEMEDS, nuclear magnetic resonance and relative permeability analysis[J].JournalofNaturalGasScienceandEngineering,2018,51:116-128.
    [10] SHAN C A,ZHANG T S,LIANG X,et al. On the fundamental differenceofadsorption-poressystemsbetweenvitrinite-andinertiniterich anthracite derived from the southern Sichuan basin, China[J].Journal of Natural Gas Science and Engineering,2018,53:32-44.
    [11] LI Y,ZHANG C,TANG D Z,et al. Coal pore size distributions controlled by the coalification process:an experimental study of coals from the Junggar, Ordos and Qinshui basins in China[J]. Fuel,2017,206:352-363.
    [12] QAJAR A,DAIGLE H,PRODANOVIC M. The effects of pore geometry on adsorption equilibrium in shale formations and coal-beds:lattice density functional theory study[J]. Fuel,2016,163:205-213.
    [13] LIU Y K,KANG J H,ZHOU F B,et al. Effects of maceral compositions of coal on methane adsorption heat[J]. Geofluids,2018:15.
    [14]陈亮,樊少武,李海涛,等.煤体孔隙结构特征及其对含气性的影响[J].煤炭科学技术,2017,45(11):126-132.CHEN L,FAN S W,LI H T,et al. Pore structure characteristics of coal and its influences to gas bearing[J]. Coal Science and Technology,2017,45(11):126-132.
    [15] JIAN K,FU X H,DING Y M,et al. Characteristics of pores and methane adsorption of low-rank coal in China[J]. Journal of Natural Gas Science and Engineering,2015,27:207-218.
    [16] WANG F,CHENG Y P,LU S Q,et al. Influence of coalification on the pore characteristics of middle high rank coal[J]. Energy&Fuels,2014,28(9):5729-5736.
    [17] MAHAJAN O P. CO2surface area of coals:the 25-year paradox[J].Carbon,1991,29(6):735-742.
    [18]孟召平,刘珊珊,王保玉,等.不同煤体结构煤的吸附性能及其孔隙结构特征[J].煤炭学报,2015,40(8):1865-1870.MENG Z P,LIU S S,WANG B Y,et al. Adsorption capacity and its pore structure of coals with different coal body structure[J]. Journal of China Coal Society,2015,40(8):1865-1870.
    [19]钟玲文,张慧,员争荣,等.煤的比表面积孔体积及其对煤吸附能力的影响[J].煤田地质与勘探,2002(3):26-29.ZHONG L W,ZHANG H,YUAN Z R,et al. Specific surface area, pore volume and their impact on adsorption capacity for coal[J]. Coal Geology&Exploration,2002(3):26-29.
    [20] WANG B Y,QIN Y,SHEN J,et al. Pore structure characteristics of low-and medium-rank coals and their differential adsorption and desorption effects[J]. Journal of Petroleum Science and Engineering,2018,165:1-12.
    [21]李洪美.活性炭纤维对有机废气吸附性能的研究[D].大连:大连理工大学,2008.LI H M. The study on adsorption properties of organic waste gases by activated caibon fiber[D]. Dalian:Dalian University of Technology,2008.
    [22] WANG L,YU Q C. The effect of moisture on the methane adsorption capacity of shales:a study case in the eastern Qaidam Basin in China[J]. Journal of Hydrology,2016,542:487-505.
    [23] WHITE C M,SMITH D H,JONES K L,et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery-a review[J].Energy&Fuels,2005,19(3):659-724.
    [24] WANG Q Q,LI W,ZHANG D F,et al. Influence of high-pressure CO2exposure on adsorption kinetics of methane and CO2on coals[J].Journal of Natural Gas Science and Engineering,2016,34:811-822.
    [25] ZHANG S H,TANG S H,ZHANG J P,et al. Pore structure characteristics of China sapropelic coal and their development influence factors[J]. Journal of Natural Gas Science and Engineering,2018,53:370-384.
    [26] TAO S,CHEN S D,TANG D Z,et al. Material composition, pore structure and adsorption capacity of low-rank coals around the first coalification jump:a case of eastern Junggar basin,China[J]. Fuel,2018,211:804-815.
    [27] SHEN J,ZHAO J C,QIN Y,et al. Water imbibition and drainage of high rank coals in Qinshui basin, China[J]. Fuel,2018,211:48-59.
    [28] FAN J J,JU Y W,LIU S B,et al. Micropore structure of coals under different reservoir conditions and its implication for coalbed methane development[J]. Journal of China Coal Society,2013,38(3):441-447.
    [29] MASTALERZ M,HE L L,MELNICHENKO Y B,et al. Porosity of coal and shale:insights from gas adsorption and SANS/USANS techniques[J]. Energy&Fuels,2012,26(8):5109-5120.
    [30] YAO Y B,LIU D M,TANG D Z,et al. Fractal characterization of adsorption-pores of coals from North China:an investigation on CH4adsorption capacity of coals[J]. International Journal of Coal Geology,2008,73(1):27-42.
    [31] NIE B S,LIU X F,YANG L L,et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel,2015,158:908-917.
    [32] SONG W H,YAO J,MA J S,et al. Grand canonical Monte Carlo simulations of pore structure influence on methane adsorption in micro-porouscarbonswithapplicationstocoalandshalesystems[J]. Fuel,2018,215:196-203.
    [33] CLARKSON C R,BUSTIN R M. The effect of pore structure and gas pressure upon the transport properties of coal:a laboratory and modeling study. 2. Adsorption rate modeling[J]. Fuel,1999,78(11):1345-1362.
    [34] MANDELBROT B. How long is the coast of Britain? Statistical selfsimilarity and fractional dimension[J]. Science,1967,156(3775):636-638.
    [35] REICH M H,RUSSO S P,SNOOK I K. The application of SAXS to determine the fractal properties of porous carbon-based materials[J].Journal of Colloid and Interface Science,1990,135:353-362.
    [36] FRIESEN W I,MIKULA R J. Fractal dimensions of coal particles[J].Journal of Colloid and Interface Science,1987,120:263-271.
    [37] ZHAO Y X,PENG L. Investigation on the size and fractal dimension of nano-poreincoalsbysynchrotronsmallangleX-rayscattering[J].Chinese Science Bulletin,2017,62(21):2416-2427.
    [38] AVNIR D,JARONIEC M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir,1989,5(6):1431-1433.
    [39]李子文,郝志勇,庞源,等.煤的分形维数及其对瓦斯吸附的影响[J].煤炭学报,2015,40(4):863-869.LI Z W,HAO Z Y,PANG Y,et al. Fractal dimensions of coal and their influence on methane adsorption[J]. Journal of China Coal Society,2015,40(4):863-869.
    [40] ZHU J F,LIU J Z,YANG Y M,et al. Fractal characteristics of pore structures in 13 coal specimens:relationship among fractal dimension,pore structure parameter,and slurry ability of coal[J]. Fuel Processing Technology,2016,149:256-267.
    [41] NEIMARK A V,HANSON M,UNGER K K. Fractal analysis of the distribution of high-viscosity fluids in porous supports[J]. The Journal of Physical Chemistry,1993,97(22):6011-6015.
    [42]姜文,唐书恒,张静平,等.基于压汞分形的高变质石煤孔渗特征分析[J].煤田地质与勘探,2013,41(4):9-13.JIANG W,TANG S H,ZHANG J P,et al. Characteristics of pore permeability of highly metamorphic bone coal[J]. Coal Geology&Exploration,2013,41(4):9-13.
    [43]宋昱,姜波,李凤丽,等.低-中煤级构造煤纳米孔分形模型适用性及分形特征[J].地球科学,2018,43(5):1611-1622.SONG Y,JIANG B,LI F L,et al. Applicability of fractal models and nanopores’fractalcharacteristicsforlow-middleranktectonicdeformed coals[J]. Earth Science,2018,43(5):1611-1622.
    [44] SONG H,MIN L,JUN X,et al. Fractal characteristic of three Chinese coals[J]. Fuel,2004,83(10):1307-1313.
    [45] CLARKSON C R,SOLANO N,BUSTIN R M,et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS,gas adsorption,and mercury intrusion[J]. Fuel,2013,103:606-616.
    [46]王倩倩.超临界二氧化碳流体对煤体理化性质及吸附性能的作用规律[D].昆明:昆明理工大学,2016.WANG Q Q. Influences of supercritical CO2fluid on phy-chemical poperties and adsorption performance of coals[D]. Kunming:Kunming University of Science and Technology,2016.
    [47] MOORE T A. Coalbed methane:a review[J]. International Journal of Coal Geology,2012,101:36-81.
    [48] BUSTIN R M,CLARKSON C R. Geological controls on coalbed methane reservoir capacity and gas content[J]. International Journal of Coal Geology,1998,38(1/2):3-26.
    [49] LAMBERSON M N,BUSTIN R M. Coalbed methane characteristics of gates formation coals,northeastern british-columbia-effect of maceral composition[J]. AAPG Bulletin-American Association of Petroleum Geologists,1993,77(12):2062-2076.
    [50]钟玲文,张新民.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探,1990,4:29-36,71-74.ZHONG L W,ZHANG X M. Coalification degree and petrographic constituent dependences of adsorpion capacity of coals[J]. Coal Geology&Exploration,1990,4:29-36,71-74.
    [51]李夏伟,刘大锰,蔡益栋,等.高煤级煤储层含水性特征及其对吸附能力的影响[J].地学前缘,2018,25(4):237-244.LI X W,LIU D M,CAI Y D,et al. Moisture content characteristics of high rank coal reservoir and its influence on adsorption capacity[J].Earth Science Frontiers,2018,25(4):237-244.
    [52] DUTTA P,BHOWMIK S,DAS S. Methane and carbon dioxide sorption on a set of coals from India[J]. International Journal of Coal Geology,2011,85(3/4):289-299.
    [53] HUANG L,NING Z F,WANG Q,et al. Effect of organic type and moistureonCO2/CH4competitiveadsorptioninkerogenwith implications for CO2sequestration and enhanced CH4recovery[J]. Applied Energy,2018,210:28-43.
    [54]马东民.煤储层的吸附特征实验综合分析[J].北京科技大学学报,2003,4:291-294.MA D M. Synthetical analysis on adsorbing characteristic experiment of coal seams[J]. Journal of University of Science and Technology Beijing,2003,4:291-294.
    [55] LAXMINARAYANA C,CROSDALE P J. Role of coal type and rank on methane sorption characteristics of Bowen basin, Australia coals[J].International Journal of Coal Geology,1999,40(4):309-325.
    [56] GENSTERBLUM Y,MERKEL A,BUSCH A,et al. High-pressure CH4and CO2sorption isotherms as a function of coal maturity and the influence of moisture[J]. International Journal of Coal Geology,2013,118:45-57.
    [57] GUO D Y,GUO X J. The influence factors for gas adsorption with different ranks of coals[J]. Adsorption Science&Technology,2018,36(3/4):904-918.
    [58] ZHANG D F,CUI Y J,LI S G,et al. Supercritical pure methane and CO2adsorption on various rank coals of China:experiments and modeling[J]. Energy&Fuels,2011,25(4):1891-1899.
    [59] GüRDAL G,NAMIK Y M. Pore volume and surface area of the Carboniferous coals from the Zonguldak basin(NW Turkey)and their variations with rank and maceral composition[J]. International Journal of Coal Geology,2001,48(1/2):133-144.
    [60] LEVINE J R. Coalification:the evolution of coal as source rock and reservoir rock. In hydrocarbons from coal[C]//LAW B E,RICE D D,Eds. AAPG Studies in Geology 38.American Association of Petroleum Geologists:Tulsa,OK,1993.
    [61] BAE J S,BHATIA S K,BHATIA S K,et al. Pore accessibility of methane and carbon dioxide in coals[J]. Energy&Fuels,2009,23(5/6):3319-3327.
    [62] YAN J W. Low molecular weight compounds contained in coal and the behaviors of methane adsorbed by coal at isothermal high-pressure condition[C]//YOU Z. Editor. Hydraulic Equipment and Support Systems for Mining, Stafa-Zurich:Trans Tech Publications Ltd. 2013:584-588.
    [63] LI Z K,WEI X Y,YANG Z S,et al. Characterization of extracts from geting bituminous coal[J]. Analytical Letters,2015,48(9):1494-1501.
    [64] GATHITU B B,CHEN W Y,MCCLURE M. Effects of coal interaction with supercritical CO2:physical structure[J]. Industrial&Engineering Chemistry Research,2009,48(10):5024-5034.
    [65] ZHANG K Z,CHEN Y P,LI W,et al. Influence of supercritical CO2on pore structure and functional groups of coal:implications for CO2sequestration[J]. Journal of Natural Gas Science and Engineering,2017,40:288-298.
    [66] SUN W J,WANG N,CHU W,et al. The role of volatiles and coal structural variation in coal methane adsorption[J]. Science Bulletin,2015,60(5):532-540.
    [67]何选明.煤化学[M].北京:冶金工业出版社,2010:40-41HE X M. Coal chemistry[M]. Beijing:Metallurgical Industry Press,2010:40-41
    [68]王忠乐.煤中矿物质的特性及其对焦炭结构和性质的影响研究[D].马鞍山:安徽工业大学,2014.WANG Z L. A study on the characteristics of the minerals in coal and their effects on structures and properties of the coke[D]. Ma’anshan:Anhui University of Technology,2014.
    [69] YANG H R,JIN J,LIU D Y,et al. The influence of vermiculite on the ash deposition formation process of Zhundong coal[J]. Fuel,2018,230:89-97.
    [70]侯玉华,施海艳,姬莉,等.工业煤粉中矿物质的分布规律[J].煤炭转化,2010,33(4):18-20.HOU Y H,SHI H Y,JI L,et al. Distribution of mineral matters in industrial pulverized coals[J]. Coal Conversion,2010,33(4):18-20.
    [71]刘贝,黄文辉,敖卫华,等.沁水盆地南部煤中矿物赋存特征及其对煤储层物性的影响[J].现代地质,2014,28(3):645-652.LIU B,HUANG W H,AO W H,et al. Occurrence characteristics of minerals and their influences on physical properties of coal reservoirs in Southern Qinshui basin[J]. Geoscience,2014,28(3):645-652.
    [72] KESHAVARZ A,SAKUROVS R,GRIGORE M,et al. Effect of maceral composition and coal rank on gas diffusion in Australian coals[J]. International Journal of Coal Geology,2017,173:65-75.
    [73] LIU K Q,OSTADHASSAN M,ZOU J,et al. Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale[J]. Fuel,2018,219:296-311.
    [74] CHEN M Y,CHENG Y P,LI H R,et al. Impact of inherent moisture on the methane adsorption characteristics of coals with various degrees of metamorphism[J]. Journal of Natural Gas Science and Engineering,2018,55:312-320.
    [75]刘厚宁.煤润湿性及其对煤层气吸附/解吸的影响[D].西安:西安科技大学,2015.LIU H N. Wettability of coal as well as impact on the adsorption desorption of coalbed methane[D]. Xi’an:Xi’an University of Science and Technology,2015.
    [76] GENSTERBLUM Y,MERKEL A,BUSCH A,et al. High-pressure CH4and CO2sorption isotherms as a function of coal maturity and the influence of moisture[J]. International Journal of Coal Geology,2013,118:45-57.
    [77] CROSDALE P J,BEAMISH B B,VALIX M. Coalbed methane sorption related to coal composition[J]. International Journal of Coal Geology,1998,35(1/2/3/4):147-158.
    [78] FAIZ M M,COOK A C. Influence of coal type, rank and depth on the gas retention capacity of coal in the Southern Coalfield, NSW, Gas in Australian coals[C]//BAMBERRY W J,DEPERS A M.(eds.).University of New South Wales,NSW,Australia,1991:19-29.
    [79] PASHIN J C,MCINTYRE M R. Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin:implications for carbon sequestration and enhanced coalbed methane recovery[J].International Journal of Coal Geology,2003,54(3/4):167-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700