用户名: 密码: 验证码:
多元复合材料改性耐盐冻修补砂浆性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of multivariate composite modified salt-tolerant frozen repair mortar performance
  • 作者:熊小群 ; 殷雨时 ; 吴建鑫 ; 范颖
  • 英文作者:XIONG Xiaoqun;YIN Yushi;WU Jianxin;FAN Yingfang;Tongliao Municipal Road Administration Office;Department of Civil Engineering,Da Lian Maritime University;Liaoning Provincial College of Communications;Beijing Zhongjiao Hualian Science and Technology Development Co.,Ltd.;
  • 关键词:正交试验 ; 复合材料 ; 修补砂浆 ; 耐盐冻性能
  • 英文关键词:orthogonal experiment;;composite materials;;repair mortar;;performance of salt tolerance frozen
  • 中文刊名:HLTF
  • 英文刊名:Concrete
  • 机构:内蒙古通辽市公路管理处;大连海事大学土木工程系;辽宁省交通高等专科学校;北京中交华联科技发展有限公司;
  • 出版日期:2019-05-27
  • 出版单位:混凝土
  • 年:2019
  • 期:No.355
  • 基金:国家自然科学基金(8061103);; 辽宁省交通高等专科学校技术应用项目(lnccjyky201701)
  • 语种:中文;
  • 页:HLTF201905030
  • 页数:4
  • CN:05
  • ISSN:21-1259/TU
  • 分类号:118-120+124
摘要
采用正交试验,以早期抗压强度和200次盐冻循环后的质量损失率为评定标准,确定了复合材料的最优配合比,并开展最优配合比下的复合材料对耐盐冻修补砂浆的力学性能、黏结强度、干燥收缩、盐冻性能及SEM的影响研究。结果表明:复合材料的最优配合比Power-D为0.6%,可再分散乳胶粉为2.5%,引起剂为0.01%,R-CSA为8.0%;最优配合比下的复合材料能够提高修补砂浆的抗压强度,降低干燥收缩,300次盐冻循环后的质量损失仅为4.3%、4.5%,28 d水化产物更致密。
        By orthogonal experiment,in early compressive strength and 200 times of circulation after the mass loss as the evaluation standard,to determine the optimal mixture ratio of composite materials,and confirm the optimal mixing proportion of composite material of salt-tolerant frozen repair mortar bond strength,drying shrinkage,mechanical properties,the influence of salt frost resistance and SEM studies.The experimental results show that the optimum mixture ratio of the composite material was that the Power-D was 0.6%,the dispersed emulsion powder was 2.5%,the causing agent is 0.01%,the R-CSA is 8.0%.Under the optimal ratio of composite material can improve the compressive strength of repair mortar,reduce drying shrinkage,and the 300 times of salt freezing circulation of the mass loss is only 4.3% and 4.5%,the 28 d hydration products was more dense.
引文
[1]吴泽媚,陈东丰,高培伟,等.氯盐和冻融双重作用对混凝土抗盐冻性的影响[J].硅酸盐通报,2011,30(6):1244-1248.
    [2]杨全兵.混凝土盐冻破坏机理(I)——毛细管饱水度和结冰压[J].建筑材料学报,2007(5):522-527.
    [3]MEHTA P K,MONTEIRO P J.Concrete,microstructure,properties and materials[M].
    [4]赵霄龙.寒冷地区高性能混凝土耐久性及其评价方法研究[D].哈尔滨:哈尔滨工业大学,2001:32-37.
    [5]马昆林,谢友均,李立斌,等.混凝土在NaCl溶液中抗冻及抗渗性能的研究[J].混凝土,2006,200(6):15-17.
    [6]刘建忠,孙伟,缪昌文,等.矿物掺合料对低水胶比混凝土干缩和自收缩的影响[J].东南大学学报:自然科学版,2009,39(3):580-585.
    [7]张辉,潘友强,张健.水泥混凝土抗盐冻性能影响因素研究[J].重庆交通大学学报(自然科学版),2013(4):51-54.
    [8]李中华,巴恒静.混凝土的抗盐冻性能[J].吉林大学学报(工学版),2009(4):91-96
    [9]ACOBSEN S.Calculating liquid transport into high-performance concrete during wet freeze/thaw[J].C.C.R.,2005(35):213-21.
    [10]MAHMOOD N.Effects of cyclic loading freeze-thaw and temperature changes on she-ar bond strengths of different concrete repair systems[J].Journal of Adesion,2008(9):743-763.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700