用户名: 密码: 验证码:
LA-ICP-MS标准锆石原位微区U-Pb定年及微量元素的分析测定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In situ U-Pb dating and trace element determination of standard zircons by LA-ICP-MS
  • 作者:栾燕 ; 何克 ; 谭细娟
  • 英文作者:LUAN Yan;HE Ke;TAN Xijuan;School of Earth Science and Resources, Chang'an University;Laboratory of Mineralization and Dynamics, Chang'an University;
  • 关键词:LA-ICP-MS ; 标准锆石 ; U-Pb定年 ; 微量元素
  • 英文关键词:LA-ICP-MS;;standard zircons;;U-Pb dating;;trace element
  • 中文刊名:ZQYD
  • 英文刊名:Geological Bulletin of China
  • 机构:长安大学地球科学与资源学院;长安大学成矿作用及其动力学实验室;
  • 出版日期:2019-07-15
  • 出版单位:地质通报
  • 年:2019
  • 期:v.38;No.290
  • 基金:国家自然科学基金项目《陕西勉略宁地区铜厂铜矿床成因:单矿物原位微量元素及Pb同位素地球化学制约》(批准号:41603040)和《辽宁弓长岭铁矿床磁铁富矿成因的年代学及单矿物微量元素地球化学约束》(批准号:41503035);; 陕西省自然科学基础研究计划项目《硫化物Re-Os同位素年代学对勉略宁铜厂矿田铜矿床成因制约》(编号:2019JM-160);; 中央高校基本科研业务费资助项目《陕西毕机沟两期花岗岩锆石U-Pb定年及Hf同位素研究》(编号:300102278104)和《南秦岭鱼洞子群条带状铁建造地球化学研究》(编号:300102278106)
  • 语种:中文;
  • 页:ZQYD201907014
  • 页数:13
  • CN:07
  • ISSN:11-4648/P
  • 分类号:130-142
摘要
利用长安大学成矿作用及其动力学实验室Agilent 7700X四极杆等离子体质谱(ICP-MS)和Photo Machines Analyte Excite 193nm激光,在激光频率为5Hz,束斑直径为35μm条件下,对91500、GJ-1、Ple?ovice和Qinghu 4个标准锆石进行了原位微区U-Pb同位素和微量元素测定。结果显示,91500标准锆石20个测试点的~(206)Pb/~(238)U年龄范围为1059~1070Ma,~(206)Pb/~(238)U年龄加权平均值为1063.8±6.6Ma;GJ-1标准锆石28个测试点的~(206)Pb/~(238)U年龄范围为601~610Ma,~(206)Pb/~(238)U年龄加权平均值为605.4±3.0Ma;Ple?ovice标准锆石28个测试点的~(206)Pb/~(238)U年龄范围为336~341Ma,~(206)Pb/~(238)U年龄加权平均值为338.8±1.4Ma;Qinghu标准锆石40个测试点的~(206)Pb/~(238)U年龄范围为158~165Ma,~(206)Pb/~(238)U年龄加权平均值为159.9±0.7Ma。上述结果表明,91500、GJ-1、Ple?ovice和Qinghu 4个标准锆石的~(206)Pb/~(238)U年龄都在误差范围内,且年龄加权平均值与前人报道的年龄在误差范围内一致。同时,4个标准锆石的微量元素结果基本落在前人文献报道的范围内。从4个标准锆石的稀土元素球粒陨石标准化曲线可以看出,稀土元素的相对含量较准确。以上结果表明,建立的测试方法实现了对锆石原位微区U-Pb定年及微量元素的同时测定,分析数据结果准确、可靠。
        The age and trace elements of 91500, GJ-1, Ple?ovice and Qinghu standard zircons were analyzed simultaneously by using Agilent 7700 X inductively coupled plasma-mass spectrometry(ICP-MS) and Photo Machines Analyte Excite 193 nm laser ablation at the laboratory of mineralization and dynamics, Chang'an University, with the laser frequency being 5 Hz and laser ablation spot size being 35μm. According to the results obtained, the ~(206)Pb/~(238)U age range of 20 test points of 91500 zircon is between 1059 Ma and1070 Ma, and its weighted average of ~(206)Pb/~(238)U age is 1063.8±6.6 Ma; the ~(206)Pb/~(238)U age range of 28 test points of GJ-1 zircon is between 601 Ma and 610 Ma, and its weighted average of ~(206)Pb/~(238)U age is 605.4±3.0 Ma; the ~(206)Pb/~(238)U age range of 28 test points of Ple?ovice zircon is between 336 Ma and 341 Ma, and its weighted average of ~(206)Pb/~(238)U age is 338.8±1.4 Ma; the ~(206)Pb/~(238)U age range of40 test points of Qinghu zircon is between 158 Ma and 165 Ma, and its weighted average of ~(206)Pb/~(238)U age is 159.9±0.7 Ma. The results show that the ~(206)Pb/~(238)U age ranges of four standard zircons 91500, GJ-1, Ple?ovice and Qinghu are in accordance with the recommended values within reasonable error range, and the weighted average age shows an excellent agreement with the previously reported data. All the trace element compositions of four standard zircons fall into the range of the literature available. Chondritenormalized REE distribution curves of these standard zircons show that the relative content of rare earth elements obtained is accurate. The above results show that in situ U-Pb dating and trace element determination of zircon can be carried out by using the method established in this study, and the results are accurate and reliable.
引文
[1]Gray A L. Solid sample introduction by laser ablation for inductively coupled plasma source masss pectrometry[J]. Analyst, 1985, 110(5):551-556.
    [2]Jackson S E, Güther D. The nature and sources of laser induced isotopic fractionation in laser ablation-multi collector-inductively coupled plasma-masss pectrometry[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(3):205-212.
    [3]Güther D, Hattendorf B. Solid sample analysis using laser ablation inductively coupled plasma masss pectrometry[J]. Trends in Analytical Chemistry, 2005, 24(3):255-263.
    [4]Guzmics T, Zajacz Z, Kodolanyi J, et al. LA-ICP-MS study of apatite-and Kfeldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary:Implications for significance of carbonatite melts in the Earth’smantle[J].Geochimica et Cosmochimica Acta, 2008, 72(7):1864-1886.
    [5]Dirk F, Axel G, Frei D, et al. Precise and accurate in situ U-Pb dating of zircon with high sample through put by automated LASF-ICP-MS[J]. Chemical Geology, 2009, 261(3/4):261-270.
    [6]Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-masss pectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370.
    [7]柳小明,高山,第五春荣,等.单颗粒锆石的20μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定[J].科学通报,2007, 52(2):228-235.
    [8]Johnston S, Gehrels G, Valencia V, et al. Small-volume U-Pb zircon geochronology by laser ablation multicollector-ICP-MS[J].Chemical Geology, 2009, 259(3/4):218-229.
    [9]Lee J K W, Williams I S, Ellis D. Pb, U and Th diffusion in natural zircon[J]. Nature, 1997, 390:159-163.
    [10]Cherniak D J, WatsonE B. Pb diffusion in zircon[J]. Chemical Geology, 2000, 172:5-24.
    [11]宋彪.质谱计逐级蒸发-沉积测定单颗粒锆石年龄原理及可靠性的证明——兼论锆石同位素地质年代学的适用性[J].地球学报, 1994, 15(1/2):206-217.
    [12]王璐,刘顺生.锆石裂变径迹年龄和逐层蒸发法铅年龄测定对比研究[J].地球学报, 1994, 15(1/2):226-231.
    [13]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004, 49(16):1589-1604.
    [14]王秀丽,李向辉,李秋立,等.应用新型固体质谱计IsoProbe-T高精度地测定单颗粒锆石年龄[J].地球学报, 2005, 26(S1):24-25.
    [15]李长民.锆石成因矿物学与锆石微区定年综述[J].地质调查与研究, 2009, 33(3):161-174.
    [16]Liu Y S, Hu Z C, Gao S, et al. In situ, analysis of major and trace elements of an hydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1):34-43.
    [17]Ludwig K R. User’s manual for Isoplot 3.0:A geochronological toolkit for Microsoft Excel[M]. California:Berkeley Geochronology Center Special Publication, 2003, 4:1-70.
    [18]Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J].Geostandards Newsletter, 1995, 19(1):1-23.
    [19]Wiedenbeck M, Hanchar J M, Peck W H, et al. Further Characterisation of the 91500 Zircon Crystal[J]. Geostandards&Geoanalytical Research, 2004, 28(1):9-39.
    [20]侯可军,李延河,田有荣. LA-MC-ICP-MS锆石微区原位UPb定年技术[J].矿床地质, 2009, 28(4):481-492.
    [21]王岚,杨理勤,王亚平,等.锆石LA-ICP-MS原位微区U-Pb定年及微量元素的同时测定[J].地球学报, 2012, 33(5):763-772.
    [22]彭陆,李全忠,柴发达,等.单颗粒锆石小束斑LA-ICPMS原位微区U-Pb年龄的测定[J].合肥工业大学学报(自然科学版),2017, 40(1):110-116.
    [23]Lopez R, Cameron K L, Jones N W. Evidence for Paleoproterozoic, Grenvillian and Pan-African age Gondwana crust beneath northeastern Mexico[J]. Precambiran Research, 2001,107(3/4):195-214.
    [24]Paquette J L, Pin C. A new miniaturized extraction chromatography method for precise U-Pb zircon geochronology[J]. Chemical Geology, 2001, 176(1):311-319.
    [25]Amelin Y V, Zaitsev A N. Precise geochronology of phos-corites and carbonatites:The critical role of U-series disequiliriumin age interpretations[J]. Geochimica et Cosmochimica Acta, 2002, 66(13):2399-2419.
    [26]Nebel-Jacobsen Y, Scherer E E, Münker C, et al. Separation of U,Pb, Lu and Hf from single zircons for combined U-Pb dating and Hf isotope measurements by TIMS and MC-ICPMS[J].ChemicalGeology, 2005, 220(1/2):105-120.
    [27]Chen F, Siebel W, Satir M. Zircon U-Pb and Pb isotope fractionation during stepwise HF acid leaching and geochronological implications[J]. Chemical Geology, 2002, 191(1):155-164.
    [28]Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1):47-69.
    [29]Elhou S, Belousova E, Griffin W L, et al. Trace element and isotopic composition of GJ-red zircon standard by laserablation[J].Geochimica et Cosmochimica Acta, 2006, 70(18):A158-A158.
    [30]谢烈文,张艳斌,张辉煌,等.锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定[J].科学通报, 2008, 53(2):220-228.
    [31]Sláma J, Ko?ler J, Condon D J, et al. Ple?ovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J].Chemical Geology, 2008, 249(1/2):1-35.
    [32]Li X H, Liu Y, Li Q L, et al. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization[J]. Geochem. Geophys. Geosyst., 2009, 10(4):Q04010, doi:10. 1029/2009GC002400.
    [33]李献华,唐国强,龚冰,等. Qinghu(清湖)锆石:一个新的U-Pb年龄和O-Hf同位素微区分析工作标样[J].科学通报, 2013, 58(20):1954-1961.
    [34]Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICPMS[J]. Chemical Geology, 2008, 247(1/2):100-118.
    [35]Taylor S R, McLennan S M. The continental crust:its composition and evolution[M]. Oxford:Blackwell, 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700