用户名: 密码: 验证码:
表面等离激元“热点”的可控激发及近场增强光谱学
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces
  • 作者:冯仕靓 ; 王靖宇 ; 陈舒 ; 孟令雁 ; 沈少鑫 ; 杨志林
  • 英文作者:Feng Shi-Liang;Wang Jing-Yu;Chen Shu;Meng Ling-Yan;Shen Shao-Xin;Yang Zhi-Lin;Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices,Xiamen University;
  • 关键词:表面等离激元共振 ; 表面增强拉曼 ; 针尖增强拉曼 ; 表面等离激元增强二次谐波
  • 英文关键词:surface plasmon resonance;;surface-enhanced Raman spectroscopy;;tip-enhanced Raman spectroscopy;;plasmon-enhanced second harmonic generation
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:厦门大学物理系半导体光电材料及其高效转换器件协同创新中心;
  • 出版日期:2019-07-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:21673192,91850119,11474239);; 国家重点研发计划(批准号:2016YFA0200601,2017YFA0204902)资助的课题~~
  • 语种:中文;
  • 页:WLXB201914014
  • 页数:15
  • CN:14
  • ISSN:11-1958/O4
  • 分类号:181-195
摘要
金属纳米结构中特定表面等离激元模式的光学激发及其相互作用是发展高分辨、高灵敏、高精度界面光谱学的物理基础.本文综述了我们研究组近期在表面等离激元共振的光学激发、分类识别、近场增强及在界面光谱学中的应用等方面的进展,主要内容包括:1)利用时域有限差分法,分析了金属粒子-基底体系中SPR"热点"产生的物理机制及影响因素,讨论了电模式和磁模式下界面"热点"的可控激发及"热点"转移的影响因素; 2)利用粒子-金膜体系,实现了可见光频率的表面等离激元磁共振,并利用其形成的"热点"进行了表面增强拉曼光谱实验,获得了比常规电模式更高的拉曼增强; 3)通过界面SPR"热点"增强二次谐波的实验和理论研究,提出并实现了空间分辨率达到1 nm的等离激元增强二次谐波纳米尺; 4)讨论了针尖增强拉曼光谱及针尖增强荧光体系中的空间分辨率、定向发射等关键共性问题的解决方案.相关研究成果可为界面SPR"热点"的可控激发及进一步发展表面增强拉曼、针尖增强拉曼、表面等离激元增强二次谐波等各类高灵敏度,高空间分辨率的界面光谱学方法提供新的思路.
        Optical excitations and mutual couplings of surface plasmons with specific modes in metal nanostructures are the physical basis for developing the high spatial resolution, high sensitivity, and high precision spectroscopy. Here, we systematically review latest advances in optical excitations, classifications and identifications of surface plasmon resonance modes and their typical applications in several typical interfaces.We discuss several aspects below. First, the intrinsic mechanism of creating "hot spots" in metal particle-film systems is elucidated by the finite-difference time-domain numerical method. Spatial transfers and influence factors of the "hot spots" under plasmon-induced electric-resonance and plasmon-induced magnetic-resonance conditions are discussed. Second, the plasmon-induced magnetic-resonance in the visible-light region is successfully realized in a gold nanoparticle-film system. Meanwhile, experimental results of surface-enhanced Raman spectroscopy show that the "hot spots" in the magnetic-resonance mode can output Raman scattering with a much higher enhancement factor than that in the conventional electric-resonance mode. Third, we design nonlinear nanorulers that can reach approximately 1-nm resolution by utilizing the mechanism of plasmonenhanced second-harmonic generation(PESHG). Through introducing Au@SiO_2(core@shell) shell isolated nanoparticles, we strive to maneuver electric-field-related gap modes such that a reliable relationship between PESHG responses and gap sizes, represented by " PESHG nanoruler equation", can be obtained. Fourth, a critical and general solution is proposed to quantitatively describe the spatial resolution and directional emission in tip-enhanced Raman spectroscopy and tip-enhanced fluorescence. These results may help enhance our understanding of the intrinsic physical mechanism of the surface plasmon resonance, and offer opportunities for potential applications in surface-enhanced Raman spectroscopy, tip-enhanced Raman spectroscopy, second harmonic generation, and other plasmon-enhanced spectroscopy.
引文
[1]Maier S A 2007 Plas-monics:Fundamentals and Applications(New York:Springer Science&Business Media)pp39-87
    [2]Luan J,Morrissey J J,Wang Z,Derami H G,Liu K K,Cao S,Jiang Q,Wang C,Kharasch E D,Naik R R,Singamanen S2018 Light-Sci.Appl. 7 29
    [3]Butet J,Bernasconi G D,Petit M,Bouhelier A,Yan C,Martin O J F,Cluzel B,Demichel O 2017 ACS Photon.42923
    [4]Lee K L,Hung C Y,Pan M Y,Wu T Y,Yang S Y,Wei P K2018 Adv.Mater.5 1801064
    [5]Oh S H,Altug H 2018 Nat Commun.9 5263
    [6]Zheng J,Yang W,Wang J,Zhu J,Qian L,Yang Z 2019Nanoscale 11 406 1
    [7]Liberal I,Engheta N 2017 Nat.Photon.11 149
    [8]Zhang R,Zhang Y,Dong Z C,Jiang S,Zhang C,Chen L G,Zhang L,Liao Y,Aizpurua J,Luo Y,Yang J L,Hou J G2013 Nature 498 82
    [9]Zhang Y,Meng Q S,Zhang L,Luo Y,Yu Y J,Yang B,Zhang Y,Esteban R,Aizpurua J,Luo Y,Yang J L,Dong Z C,Hou J G 2017 Nat.Commun.8 15225
    [10]Wang S,Wu P C,Su V C,Lai Y C,Chu C H,Chen J W,Lu S H,Chen J,Xu B,Kuan C H,Li T,Zhu S,Tsai D P 2017Nat.Commun.8 187
    [11]Wang P,Krasavin A V,Nasir M E,Dickson W,Zayats A V2018 Nat.Nanotechnol.13 159
    [12]Zhou L,Swearer D F,Zhang C,Robatjazi H,Zhao H,Henderson L,Dong L,Christopher P,Carter E A,Nordlander P,Halas N J 2018 Science 362 69
    [13]Zhao F,Yang W,Shih T M,Feng S,Zhang Y,Li J,Yan J,Yang Z 2018 A CS Photon.5 3519
    [14]Fang Y,Seong N H,Dlott D D 2008 Science 321 388
    [15]Xu H,Bjerneld E J,Kall M,Borjesson L 1999 Phys.Rev.Lett.83 4357
    [16]Rahmani M,Luk'yanchuk B,Hong M 2013 Laser Photon.Rev.7 329
    [17]Jin R,Zeng C,Zhou M,Chen Y 2016 Chem.Rev.116 10346
    [18]Kneipp K,Wang Y,Kneipp H,Perelman L T,Itzkan I,Dasari R R,Feld M S 1997 Phys.Rev.Lett. 78 1667
    [19]Xu H 2004 Appl. Phys.Lett. 85 5980
    [20]Li J F,Huang Y F,Ding Y,Yang Z L,Li S B,Zhou X S,Fan F R,Zhang W,Zhou Z Y,Wu D Y,Ren B,Wang Z L,Tian Z Q 2010 Nature 464 392
    [21]Gong Y,Joly A G,Hu D,El-Khoury P Z,Hess W P 2015Nano Lett.15 3472
    [22]Saito Y,Motohashi M,Hayazawa N,Iyoki M,Kawata S 2006Appl. Phys.Lett.88 143109
    [23]Sonntag M D,Klingsporn J M,Garibay L K,Roberts J M,Dieringer J A,Seideman T,Scheidt K A,Jensen L,Schatz G C,van Duyne R P 2011 J.Phys.Chem.C 116 478
    [24]Liu H,Ng J,Wang S B,Hang Z H,Chan C T,Zhu S N 2011New J.Phys.13 073040
    [25]Hajisalem G,Nezami M S,Gordon R 2014 Nano Lett.146651
    [26]Akselrod G M,Argyropoulos C,Hoang T B,Ciraci C,Fang C,Huang J,Smith D R,Mikkelsen M H 2014 Nat.Photon.8835
    [27]Lian H,Gu Y,Ren J,Zhang F,Wang L,Gong Q 2015 Phys.Rev.Lett.114 193002
    [28]Sun J,Hu H,Zheng D,Zhang D,Deng Q,Zhang S,Xu H2018 ACS Nano 12 10393
    [29]Zhang C,Chen B Q,Li Z Y 2015 J.Phys.Chem.C 11911858
    [30]Cheng Z Q,Shi H Q,Yu P,Liu Z M 2018 Acta Phys.Sin.67197302(in Chinese)[程自强,石海泉,余萍,刘志敏2018物理学报67 197302]
    [31]Ciraci C,Hill R,Mock J J,Urzhumov Y,FernandezDominguez A I,Maier S A,Pendry J B,Chilkoti A,Smith D R 2012 Science 337 1072
    [32]Kauranen M,Zayats A V 2012 Nat. Photon.6 737
    [33]Huang Q,Xiong S Z,Zhao Y,Zhang X D 2012 Acta Phys.Sin.61 157801(in Chinese)[黄茜,熊绍珍,赵颖,张晓丹2012物理学报61 157801]
    [34]Nikitin A Y,Alonso-Gonzalez P,Velez S,Mastel S,Centeno A,Pesquera A,Zurutuza A,Casanova F,Hueso L E,Koppens F H L,R H 2016 Nat.Photon.10 239
    [35]Fang Y,Huang Y 2013 Appl. Phys.Lett. 102 153108
    [36]Li Z,Zhang S,Tong L,Wang P,Dong B,Xu H 2013 ACS Nano 8 701
    [37]Chen H,Liu S,Zi J,Lin Z 2015 ACS Nano 9 1926
    [38]Smith D R,Pendry J B,Wiltshire M C K 2004 Science 305788
    [39]Liu N,Hentschel M,Weiss T,Alivisatos A P,Giessen H 2011Science 332 1407
    [40]Ni X,Wong Z J,Mrejen M,Wang Y,Zhang X 2015 Scie-n.ce349 1310
    [41]Ding T,Sigle D,Zhang L,Mertens J,de Nijs B,Baumberg J2015 ACS Nano 9 6110
    [42]Fan J A,Wu C,Bao K,Bao J,Bardhan R,Halas N J,Manoharan V N,Nordlander P,Shvets G,Capasso F 2010Science 328 1135
    [43]Shafiei F,Monticone F,Le K Q,Liu X X,Hartsfield T,Alu A,Li X 2013 Nat. Nanotechnol. 895
    [44]Zhang S,Fan W,Panoiu N C,Malloy K J,Osgood R M,Brueck S R J 2005 Phys.Rev.Lett.95 137404
    [45]Moreau A,Ciraci C,Mock J J,Hill R T,Wang Q,Wiley B J,Chilkoti A,Smith D R 2012 Nature 492 86
    [46]Lorente-Crespo M,Wang L,Ortuno R,Garcia-Meca C,Ekinci Y,Martinez A 2013 Nano Lett.13 2654
    [47]Nazir A,Panaro S,Proietti Zaccaria R,Liberale C,de Angelis F,Toma A 2014 Nano Lett.14 3166
    [48]Chen S,Yang Z,Meng L,Li J,Williams C T,Tian Z 2015 J.Phys.Chem.C119 5246
    [49]Chen S,Meng L Y,Shan H Y,Li J F,Qian L,Williams C T,Yang Z L,Tian Z Q 2016 ACS Nano 10 581
    [50]Wang X,Li M,Meng L,Lin K,Feng J,Huang T,Yang Z,Ren B 2013 ACS Nano 8 528
    [51]Chen S,Zhang Y,Shih T M,Yang W,Hu S,Hu X,Li J,Ren B,Mao B,Yang Z,Tian Z 2018 Nano Lett.18 2209
    [52]Shen S,Meng L,Zhang Y,Han J,Ma Z,Hu S,He Y,Li J,Ren B,Shih T M,Wang Z,Yang Z,Tian Z 2015 Nano Lett.15 6716
    [53]Meng L,Yang Z,Chen J,Sun M 2015 Sci.Rep.5 9240
    [54]Meng L,Yang Z 2018 Nanophotonics 7 1325
    [55]Meng L,Sun M,Chen J,Yang Z 2016 Sci.Rep.6 19558
    [56]Mertens J,Eiden A L,Sigle D O,Huang F,Lombardo A,Sun Z,Sundaram R S,Colli A,Tserkezis C,Aizpurua J,Milana S,Ferrari A C,Baumberg J J 2013 Nano Lett.13 5033
    [57]Halas N J,Lal S,Chang W S,Link S,Nordlander P 2011Chem.Rev.111 3913
    [58]Ye J,Wen F,Sobhani H,Lassiter J B,van Dorpe P,Nordlander P,Halas N J 2012 Nano Lett.12 1660
    [59]Monticone F,Alu A 2014 J.Mater.Chem.C 2 9059
    [60]Dolling G,Enkrich C,Wegener M,Soukoulis C M,Linden S2006 Opt.Lett. 31 1800
    [61]Podolskiy V A,Sarychev A K,Narimanov E E,Shalaev V M2005 J.Opt.A:Pure Appl. Opt.7 S 3 2
    [62]Sheikholeslami S N,Garcia-Etxarri A,Dionne J A 2011 Nano Lett.11 3927
    [63]Lei D Y,Fernandez-Dominguez A I,Sonnefraud Y,Appavoo K,Haglund Jr R F,Pendry J B,Maier S A 2012 A CS Nano 61380
    [64]Bao Y,Hu Z,Li Z,Zhu X,Fang Z 2015 Small 11 2177
    [65]Liu N,Mukherjee S,Bao K,Brown L V,Dorfmuller J,Nordlander P,Halas N J 2012 Nano Lett.12 364
    [66]Davis R M,Kiss B,Trivedi D R,Metzner T J,Liao J C,Gambhir S S 2018 A CS Nano 12 9669
    [67]Shiota M,Nay a M,Yamamoto T,Hishiki T,Tani T,Takahashi H,Kubo A,Koike D,Itoh M,Obmura M 2018Nat.Commun.9 1561
    [68]Sanchez-Illana A,Mayr F,Cuesta-Garcia D,Pineiro-Ramos J D,Cantarero A,de la Guardia M,Vento M,Lendl B,Quintas G,Kuligowski J 2018 Anal. Che-m.90 9093
    [69]Lin W,Xu X,Quan J,Sun M 2018 Appl. Spectrosc.Rev.53771
    [70]Li Z,Gao Y,Zhang L,Fang Y,Wang P 2018 Nanoscale 1018720
    [71]Moskovits M 1985 Rev.Mod.Phys.57 783
    [72]Slablab A,Le Xuan L,Zielinski M,de Wilde Y,Jacques V,Chauvat D,Roch J F 2012 Opt.Express 20 220
    [73]Danckwerts M,Novotny L 2007 Phys.Rev.Lett.98 026104
    [74]Hill R T,Mock J J,Hucknall A,Wolter S D,Jokerst N M,Smith D R,Chilkoti A 2012 A CS Nano 6 9237
    [75]Mauser N,Hartschuh A 2014 Chem.Soc.Rev.43 1248
    [76]Zhang Z,Sheng S,Wang R,Sun M 2016 Anal. Chem.889328
    [77]Zhang Z L,Chen L,Sheng S X,Sun M T,Zheng H R,Chen K Q,Xu H X 2014 Front. Phys.9 17
    [78]Sun M,Zhang Z,Chen L,Sheng S,Xu H 2014 Adv.Opt.Mater.2 74
    [79]Richards D,Milner R G,Huang F,Festy F 2003 J.Raman Spectrosc.34 663
    [80]Steidtner J,Pettinger B 2007 Rev.Sci.Instrum..78 103104
    [81]Chen C,Hayazawa N,Kawata S 2014 Nat.Commun.5 3312
    [82]Ayars E J,Hallen H D,Jahncke C L 2000 Phys.Rev.Lett.854180
    [83]Zhang Z,Sun M,Ruan P,Zheng H,Xu H 2013 Nanoscale 54151
    [84]Mandal P,Gupta P,Nandi A,Ramakrishna S A 2012 J.Nanophotonics 6 063527
    [85]Bharill S,Chen C,Stevens B,Kaur J,Smilansky Z,Mandecki W,Gryczynski I,Gryczynski Z,Cooperman B S,Goldman Y2011 A CS Nano 5 399
    [86]Abadeer N S,Brennan M R,Wilson W L,Murphy C J 2014ACS Nano 8 8392
    [87]Li C Y,Meng M,Huang S C,Li L,Huang S R,Chen S,Meng L Y,Panneerselvam R,Zhang S J,Ren B,Yang Z L,Li J F,Tian Z Q 2015 J.Am.Chem.Soc.137 13784
    [88]Gerton J M,Wade L A,Lessard G A,Ma Z,Quake S R 2004Phys.Rev.Lett.93 180801
    [89]Dong Z C,Guo X L,Trifonov A,Dorozhkin P,Miki K,Kimura K,Yokoyama S,Mashiko S 2004 Phys.Rev.Lett.92086801
    [90]Zhang Y,Zhang Y,Dong Z C 2018 Acta Phys.Sin.67 223301(in Chinese)[张尧,张杨,董振超2018物理学报67 223301]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700