用户名: 密码: 验证码:
Thermostable ethanol tolerant xylanase from a cold-adapted marine species Acinetobacter johnsonii
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermostable ethanol tolerant xylanase from a cold-adapted marine species Acinetobacter johnsonii
  • 作者:Dongsheng ; Xue ; Xuhao ; Zeng ; Dongqiang ; Lin ; Shanjing ; Yao
  • 英文作者:Dongsheng Xue;Xuhao Zeng;Dongqiang Lin;Shanjing Yao;Key Laboratory of Fermentation Engineering (Hubei Universty of Technology), Ministry of Education, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology;Department of Chemical and Bioengineering, Zhejiang University;
  • 英文关键词:Xylanase;;Ethanol tolerant;;Thermostable;;Cold-adapted;;Acinetobacter Johnsonii
  • 中文刊名:ZHGC
  • 英文刊名:中国化学工程学报(英文版)
  • 机构:Key Laboratory of Fermentation Engineering (Hubei Universty of Technology), Ministry of Education, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology;Department of Chemical and Bioengineering, Zhejiang University;
  • 出版日期:2019-05-15
  • 出版单位:Chinese Journal of Chemical Engineering
  • 年:2019
  • 期:v.27
  • 基金:Supported by the Science and Technology Research Project of Hubei Provincial Department of Education(B2017041)
  • 语种:英文;
  • 页:ZHGC201905022
  • 页数:5
  • CN:05
  • ISSN:11-3270/TQ
  • 分类号:196-200
摘要
A xylanase-producing bacterium, isolated from deep sea sediments, was identified as the cold-adapted marine species Acinetobacter Johnsonii. A cold-adapted marine species Acinetobacter Johnsonii could grow at 4 ℃. The optimum temperature and pH of xylanase from a cold-adapted marine species Acinetobacter Johnsonii were 55 ℃ and pH 6.0. Xylanase from a cold-adapted marine species Acinetobacter Johnsonii remained at 80% activity after incubation for 1 h at 65 ℃. The xylanase activity was 1.2-fold higher in 4% ethanol solution than in ethanol free solution. Gibbs free energy of denaturation, ΔG, was higher in 4% ethanol solution than in ethanol free solution. Thermostable ethanol tolerant xylanase was valuable for bioethanol production by simultaneous saccharification and fermentation process with xylan as a carbon source.
        A xylanase-producing bacterium, isolated from deep sea sediments, was identified as the cold-adapted marine species Acinetobacter Johnsonii. A cold-adapted marine species Acinetobacter Johnsonii could grow at 4 ℃. The optimum temperature and pH of xylanase from a cold-adapted marine species Acinetobacter Johnsonii were 55 ℃ and pH 6.0. Xylanase from a cold-adapted marine species Acinetobacter Johnsonii remained at 80% activity after incubation for 1 h at 65 ℃. The xylanase activity was 1.2-fold higher in 4% ethanol solution than in ethanol free solution. Gibbs free energy of denaturation, ΔG, was higher in 4% ethanol solution than in ethanol free solution. Thermostable ethanol tolerant xylanase was valuable for bioethanol production by simultaneous saccharification and fermentation process with xylan as a carbon source.
引文
[1]A.Ebringerová,T.Heinze,Xylan and xylan derivatives-Biopolymers with valuable properties.1.Naturally occurring xylans:Structures,isolation,procedure and properties,Macromol.Rapid Commun.21(2000)542-556.
    [2]H.V.Scheller,P.Ulvskov,Hemicelluloses,Annu.Rev.Plant Biol.61(2010)263-289.
    [3]A.Ebringerová,Z.Hromádková,T.Heinze,Hemicellulose,Adv.Polym.Sci.186(2005)1-67.
    [4]V.Smil,Crop residues:Agriculture's Largest Harvest:Crop residues incorporate more than half of the world's agricultural phytomass,Bioscience 49(1999)299-308.
    [5]T.Collins,C.Gerday,G.Feller,Xylanases,xylanase families and extremophilic xylanases,FEMS Microbiol.Rev.29(2005)3-23.
    [6]V.Juturu,J.C.Wu,Microbial xylanases:Engineering,production and industrial applications,Biotechnol.Adv.30(2012)1219-1227.
    [7]G.Hilpmann,N.Becher,F.A.Pahner,B.Kusema,P.M?ki-Arvela,R.Lange,D.Yu.Murzin,T.Salmi,Acid hydrolysis of xylan,Catal.Today 259(2016)376-380.
    [8]J.Kallmeyer,R.Pockalny,R.R.Adhikari,D.C.Smith,S.D'Hondt,Global distribution of microbial abundance and biomass in subseafloor sediment,Proc.Natl.Acad.Sci.109(2012)16213-16216.
    [9]K.Horikoshi,Barophiles:Deep-sea microorganisms adapted to an extreme environment,Curr.Opin.Microbiol.1(1998)291-295.
    [10]I.P.G.Marshall,S.M.Karst,P.H.Nielsen,B.B.J?rgensen,Metagenomes from deep Baltic Sea sediments reveal how past and presentenvironmental conditions determine microbial community composition,Mar.Genomics 37(2018)58-68.
    [11]B.B.J?rgensen,I.P.G.Marshall,Slow microbial life in the seabed,Annu.Rev.Mar.Sci.8(2016)1-22.
    [12]P.A.Skovgaard,H.J?rgensen,Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes,J.Ind.Microbiol.Biotechnol.40(2013)447-456.
    [13]P.C.Y.Woo,S.K.P.Lau,J.L.L.Teng,H.Tse,K.Y.Yuen,Then and now:use of 16S rDNAgene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories,Clin.Microbiol.Infect.14(2008)908-934.
    [14]L.Y.Liang,D.S.Xue,Kinetics of cellulose hydrolysis by halostable cellulase from a marine Aspergillus niger at different salinities,Process Biochem.63(2017)163-168.
    [15]D.S.Xue,L.Y.Liang,D.Q.Lin,C.J.Gong,S.J.Yao,Halostable catalytic properties of exoglucanase from a marine Aspergillus niger and secondary structure change caused by high salinities,Process Biochem.58(2017)85-91.
    [16]A.Malik,M.Sakamoto,T.Ono,K.Kakii,Coaggregation between Acinetobacter johnsonii S35 and Microbacterium esteraromaticum strains isolated from sewage activated sludge,J.Biosci.Bioeng.96(2003)10-15.
    [17]Z.H.Qiu,P.J.Shi,H.Y.Luo,Y.G.Bai,T.Z.Yuan,P.L.Yang,S.C.Liu,B.Yao,A xylanase with broad p H and temperature adaptability from Streptomyces megasporus DSM41476,and its potential application in brewing industry,Enzym.Microb.Technol.46(2010)506-512.
    [18]L.R.S.Moreira,M.C.Campos,P.H.V.M.Siqueira,L.P.Silva,C.A.O.Ricart,P.A.Martins,R.M.L.Queiroz,E.X.F.Filho,Twoβ-xylanases from Aspergillus terreus:Characterization and influence of phenolic compounds on xylanase activity,Fungal Genet.Biol.60(2013)46-52.
    [19]D.Driss,J.G.Berrin,N.Juge,F.Bhiri,R.Ghorbel,S.E.Chaabouni,Functional characterization of Penicillium occitanis Pol6 and Penicillium funiculosum GH11xylanases,Protein Expr.Purif.90(2013)195-201.
    [20]P.Jampala,M.Preethi,S.Ramanujam,B.S.Harish,K.B.Uppuluri,V.Anbazhagan,Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature,Int.J.Biol.Macromol.95(2017)843-849.
    [21]X.Huang,J.Lin,X.Ye,G.Wang,Molecular characterization of a thermophilic and salt-and alkaline-tolerant xylanase from Planococcus sp.SL4,a strain isolated from the sediment of a soda lake,J.Microbiol.Biotechnol.25(2015)662-671.
    [22]W.Bai,Y.Xue,C.Zhou,Y.Ma,Cloning,expression and characterization of a novel salt-tolerant xylanase from Bacillus sp.SN5,Biotechnol.Lett.34(2012)2093-2099.
    [23]S.Ali,A.Sayed,Regulation of cellulose biosynthesis in Aspergillus terreus,World J.Microbiol.Biotechnol.8(1992)73-75.
    [24]O.Kotchoni,W.Gachomo,B.Omafuvbe,O.Shonukan,Purification and biochemical characterization of carboxymethyl cellulose(CMCase)from a catabolite repression insensitive mutant of Bacillus pumilus,Int.J.Agric.Biol.8(2006)286-292.
    [25]Y.Sato,H.Fukuda,Y.Zhou,S.Mikami,Contribution of ethanol-tolerant xylanase G2from Aspergillus oryzae on Japanese sake brewing,J.Biosci.Bioeng.110(2010)679-683.
    [26]C.S.Goh,K.T.Lee,A visionary and conceptual macroalgae-based third-generation bioethanol(TGB)biorefinery in Sabah,Malaysia as an underlay for renewable and sustainable development,Renew.Sust.Energ.Rev.14(2010)842-848.
    [27]A.G.Marangoni,Enzyme Kinetics:A Modern Approach,John Wiley&Sons,Inc.,NJ,2003 146-150(ISBN:0-471-15985-9).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700