用户名: 密码: 验证码:
RPV模拟钢中纳米富Cu析出相的复杂晶体结构表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characterization of a Complex Crystal Structure Within Cu-rich Precipitates in RPV Model Steel
  • 作者:冯柳 ; 周邦新 ; 彭剑超 ; 王均安
  • 英文作者:FENG Liu;ZHOU Bang-xin;PENG Jian-chao;WANG Jun-an;Institute of Materials,Shanghai University;Analysis and Testing Center,Shandong University of Technology;Laboratory for Microstructures,Shanghai University;
  • 关键词:RPV模拟钢 ; 热时效 ; 纳米富Cu析出相 ; 9R晶体结构
  • 英文关键词:reactor pressure vessel model steel;;thermal aging;;nano Cu-rich precipitate;;9R crystal structure
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:上海大学材料研究所;山东理工大学分析测试中心;上海大学微结构重点实验室;
  • 出版日期:2015-07-20
  • 出版单位:材料工程
  • 年:2015
  • 期:v.43;No.386
  • 基金:国家重点基础研究发展规划(973计划2011CB610503);; 国家自然科学基金重点项目(50931003);; 上海市重点学科建设项目(S30107)
  • 语种:中文;
  • 页:CLGC201507015
  • 页数:7
  • CN:07
  • ISSN:11-1800/TB
  • 分类号:84-90
摘要
RPV模拟钢样品经过890℃水淬,660℃调质处理,然后在400℃时效13000h后,用高分辨透射电镜和能谱仪相结合的方法研究了RPV模拟钢中纳米富Cu析出相中的复杂晶体结构。纳米富Cu析出相的平均尺寸约为20nm,除了观察到常见的亚稳态9R结构、3R结构和稳态fcc结构外,还观察到同一富Cu析出相由3种不同的晶体结构组成,并分别分布在5个不同的区域中,包括1处9R、2处fcc和2处3R结构。9R结构与相邻的2个fcc结构形成的界面都具有特定的晶体取向,呈半共格关系,是由非孪晶9R结构演化而来。2处3R结构互为孪晶关系,是由孪晶9R结构演化而来。这种状态反映了纳米富Cu析出相从亚稳态演化到稳态结构的复杂过程。
        The specimens of the reactor pressure vessel(RPV)model steels were tempered at 660℃after water quenching from 890℃,aging treatment was then conducted at 400℃for 13000 h.The Curich precipitates were characterized by high resolution transmission electron microscopy(HRTEM)and energy dispersive spectroscopy(EDS)in order to study the transition process from metastable to stable structure.The average size of the nano Cu-rich precipitates is about 20 nm,besides the metastable 9R,3Rand the stable fcc crystal structures,it is observed that three different crystal structures distributed in five different regions existing in the same nano Cu-rich precipitate,including one 9R,two of fcc and two of 3Rcrystal structures.The boundaries formed by 9Rstructure with its two adjacent fcc structures have specific crystal orientations,their interfaces are semi-coherent.They are evolved from non-twin 9Rstructure.The two 3Rstructures are twins,and evolved from twin 9R structure.The above phenomena reflect the complex processes from metastable to stable structure.
引文
[1]ZHANG Z W,LIU C T,WANG X L,et al.Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions[J].Acta Mater,2012,60(6-7):3034-3046.
    [2]STYMAN P,HYDE J,WILFORD K,et al.Precipitation in long term thermally aged high copper,high nickel model RPV steel welds[J].Prog Nucl Energ,2012,57(5):86-92.
    [3]LAMBRECHT M,MESLIN E,MALERBA L,et al.On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels[J].J Nucl Mater,2010,406(1):84-89.
    [4]FUJII K,NAKATA H,FUKUYA K,et al.Hardening and microstructural evolution in A533Bsteels under neutron irradiation and a direct comparison with electron irradiation[J].J Nucl Mater,2010,400(1):46-55.
    [5]RADIGUET B,PAREIGE P,BARBY A.Irradiation induced clustering in low copper or copper free ferritic model alloys[J].Nucl Instrum and Methods Phys Res B,2009,267:1496-1499.
    [6]吕铮.核反应堆压力容器的辐照脆化与延寿评估[J].金属学报,2011,47(7):777-783.LU Z.Radiation-induced embrittlement and life evaluation of reactor pressure vessels[J].Acta Metall Sin,2011,47(7):777-783.
    [7]NIFFENEGGER M,LEBER H.Monitoring the embrittlement of reactor pressure vessel steels by using the Seebeck coefficient[J].J Nucl Mater,2009,389(1):62-67.
    [8]BERGNER F,LAMBRECHT M,ULBRICHT A,et al.Comparative small-angle neutron scattering study of neutron-irradiated Fe,Fe-based alloys and a pressure vessel steel[J].J Nucl Mater,2010,399(2-3):129-136.
    [9]TIMOFEEV B.Assessment of the first generation RPV state after designed lifetime[J].Int J of Pres Ves Pip,2004,81:703-712.
    [10]LEE K,KIMB M,LEEB B,et al.Analysis of the master curve approach on the fracture toughness properties of SA508Gr.4N Ni-Mo-Cr low alloy steels for reactor pressure vessels[J].Mater Sci Eng A,2010,527:3329-3334.
    [11]CAMMELLI S,DEGUELDRE C,CERVELLINO A,et al.Cluster formation,evolution and size distribution in Fe-Cu alloy:Analysis by XAFS XRD and TEM[J].Nucl Instrum and Methods Phys Res B,2010,268:632-637.
    [12]SCHOBER M,EIDENBERGER E,STARON P,et al.Critical consideration of precipitate analysis of Fe-1at%Cu using atom probe and small-angle neutron scattering[J].Microsc Microanal,2011,17(1):26-33.
    [13]KAMADA Y,TAKAHASHI S,KIKUCHI H,et al.Effect of pre-deformation on the precipitation process and magnetic properties of Fe-Cu model alloys[J].J Mater Sci,2009,44:949-953.
    [14]KOLLI R,SEIDMAN D.The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel[J].Acta Mater,2008,56:2073-2088.
    [15]张植权,周邦新,蔡琳玲,等.利用APT研究RPV模拟钢中相界面原子偏聚特征[J].材料工程,2014,(9):89-93.ZHANG Zhi-quan,ZHOU Bang-xin,CAI Lin-ling,et al.Characterization of atom segregation at phase interfaces in RPV model steel by APT[J].Journal of Materials Engineering,2014,(9):89-93.
    [16]HABIBI H.Atomic structure of the Cu precipitates in two stages hardening in maraging steel[J].Mater Lett,2005,59:1824-1827.
    [17]LEE T,KIM Z Y,KIM S.Crystallographic model for bcc-to-9R martensitic transformation of Cu precipitates in ferritic steel[J].Philos Mag A,2007,87(2):209-224.
    [18]HABIBI-BAJURIANI H,JENKINS M.High-resolution electron microscopy analysis of the structure of copper precipitates in a martensitic stainless steel of type PH 15-5[J].Philos Mag Lett,1996,73(4):155-162.
    [19]BLACKSTOCK J,ACKLA G.Phase transitions of copper precipitates in Fe-Cu alloys[J].Philos Mag A,2001,81:2127-2148.
    [20]蔡琳玲,徐刚,冯柳,等.核反应堆压力容器模拟钢中纳米富Cu相的变形特征[J].上海大学学报:自然科学版,2012,18(3):311CAI L L,XU G,FENG L,et al.Deformation characterization of nano-scale Cu precipitates in RPV model steel[J].J Shanghai Univ:Nat Sci,2012,18(3):311-316.
    [21]OTHEN P,JENKINS M,SMITH G,et al.Transmission electron microscope investigations of the structure of copper precipitates in thermally aged Fe-Cu and Fe-Cu-Ni[J].Philos Mag Lett,1991,64:383-391.
    [22]DUPARC H,DOOLE R,JENKINS M,et al.A high-resolution electron microscopy study of copper precipitation in Fe-1.5wt%Cu under electron irradiation[J].Philos Mag Lett,1995,71:325-333.
    [23]MOZEN R,JENKINS M,SUTTON A.The bcc-to-9Rmartensitic transformation of Cu precipitates and the relaxation process of elastic strains in an Fe-Cu alloy[J].Philos Mag A,2000,80(3):711-723.
    [24]徐刚,楚大峰,蔡琳玲,等.RPV模拟钢中纳米富Cu相的析出和结构演化研究[J].金属学报,2011,47(7):905-911.XU G,CHU D F,CAI L L,et al.Investigation on the precipitation and structure evolution of Cu-rich nanophase in RPV model steel[J].Acta Metall Sin,2011,47(7):905-911.
    [25]HEO Y,KIM B Y,KIM J,et al.Phase transformation of Cu precipitates from bcc to fcc in Fe-3Si-2Cu alloy[J].Acta Mater,2013,61:519-528.
    [26]OTHEN P,JENKINS M,SMITH G.High resolution electron microscopy studies of the structure of Cu-precipitates inα-Fe[J].Philos Mag A,1994,70:1-24.
    [27]FUJII K,OHKUBO T,FUKUY K.Effects of solute elements on irradiation hardening and microstructural evolution in low alloy steels[J].J Nucl Mater,2011,417:949-952.
    [28]MILLER M,WIRTH B,ODETTE G.Precipitation in neutronirradiated Fe/Cu and Fe/Cu/Mn model alloys:a comparison of APT and SANS data[J].Mater Sci Eng A,2003,353:133-139.
    [29]安治国,任慧平,刘宗昌,等.1.18Cu高纯钢等温时效时富铜相的析出行为[J].特殊钢,2006,27(2):20-22.AN Z G,REN H P,LIU Z C,et al.Precipitation behavior of rich copper phase in 1.18Cu high purity steel during isothermal aging[J].Special Steel,2006,27(2):20-22.
    [30]王伟.反应堆压力容器模拟钢中富Cu相的析出及晶体结构演化研究[D].上海:上海大学,2011.WANG W.Precipitation and structural evolution of copper-rich nano phases in reactor pressure vessel model steels[D].Shanghai:Shanghai University,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700