烟草品种大叶密合抗青枯病相关QTL的检测
详细信息    查看官网全文
摘要
烟草青枯病抗性遗传基础薄弱、抗源单一使烟叶生产面临巨大风险。寻找新抗源,增加抗性基因是烟草抗青枯病育种的当务之急。大叶密合为新近发现的一个兼具品质和抗性的烟草地方品种,为了深入研究其抗性遗传基础,本研究以大叶密合(抗)×长脖黄(感)的F_2(152个单株)为作图群体,构建包含184个SSR位点的遗传连锁图谱,全长2121.4 c M,平均图距11.6 c M。随后通过田间病圃对亲本、F_1和F_2进行两次抗性鉴定,并对抗青枯病数量性状位点(QTL)进行定位及遗传效应分析。第一次抗性鉴定共检测到6个QTL,分别位于第6、8、9、15、22和23连锁群,可解释的表型变异为9.7%~21.0%。第二次抗性鉴定也检测到6个QTL,位于第7、8、9、15和22连锁群,可解释的表型变异为9.3%~15.0%。两次抗性鉴定累计检测到8个QTL,其中4个为公共QTL,位于第8、9、15和22连锁群。比较分析发现大叶密合的抗性基因不同于已发现的抗源,该品种为新发现的抗青枯病品种。本研究结果为烟草青枯病新抗源的开发利用提供重要信息。
The narrow genetic basis and the simplication of bacterial wilt resistance genes in tobacco varieties make tobacco production faces enormous risks. Looking for new resistance source, increasing resistance genes is imperative for tobacco bacterial wilt resistant breeding. Dayemihe is a local variety with good quality and resistant to bacterial wilt. To understand the resistance inheritance basis of Dayemihe we mapped and characterized quantitative trait loci(QTL) conferring resistance to bacterial wilt. A genetic linkage map with 184 SSR marker loci were constructed based on a tobacco population consisting of 152 F_2 individuals from the cross Dayemihe × Changbohuang. The linkage map spans tobacco genome 2121.4 c M with average interval of 11.6 c M between adjacent markers. The resistance of both parents, F1 and F2 was identified twice, then the QTLs were mapped. For the first resistant identification, 6 putative QTL conferring resistance to bacterial wilt were detected on linkage groups 6, 8, 9, 15, 22 and 23, respectively, accounting for 9.7% to 21.0% of the phenotypic variance. For the second resistant identification, 6 putative QTL for resistance to bacterial wilt were found on linkage groups 7, 8, 9, 15 and 22, accounting for 9.3% to 15.7% of the phenotypic variance. 8 common QTLs were detected for the two resistant identification and 4 are common QTLs which located in linkage groups 8, 9, 15 and 22. Our analysis indicated that the resistant genes of Dayemihe are different with the other resistant source. These results provided important information for exploitation and utilization of new resistant source in tobacco.
引文
朱贤朝,王彦亭,王智发.中国烟草病害[M].北京:中国农业出版社,2002:152-162.
    Matsuda T,Ohash I Y.Inheritance of resistance to bacterial wilt resistant varieties in tobacco[J].Jap Jour Breeding,1973,23:175-180.
    张振臣,邓海滨,刘琼光,等.广东抗青枯病烟草资源筛选[J].广东农业科学,2014,41(7):27-29.
    Nishi T,Tajima T,Noguchi S,Ajisaka H,Negishi H(2003)Identification of DNA markers of tobacco linked to bacterial wilt resistance.Theor Appl Genet 106:765-770.
    Qian Y,Wang X,Wang D,Zhang L,Zu C,Gao Z,Zhang H,Wang Z,Sun X,Yao D.The detection of QTLs controlling bacterial wilt resistance in tobacco(N.tabacum L.).Euphytica,2013,192:259-266.
    Bindler,G.Plieske J,Bakaher N,Gunduz I,Ivanov N,et al.A high density genetic map of tobacco(Nicotiana tabacum L.)obtained from large scale microsatellite marker development.Theor.Appl.Genet.123,219-230(2011).
    Van Ooijen,J.W.,2006.Join Map®4,Software for the calculation of genetic linkage maps in experimental populations.Kyazma B.V.,Wageningen,Netherlands.
    Voorrips RE(2002)Mapchart:software for the graphical presentation of linkage maps and QTLs.J Hered93:77-78.
    Van Ooijen,J.W.,2009.Map QTL®6,Software for the mapping of Quantitative trait loci in experimental populations of diploid species.Kyazma B.V.,Wageningen,Netherlands.
    Van Ooijen J W.1999.LOD significance thresholds for QTL analysis in experimental populations of diploid species.Heredity,83:613-624.
    Churchill G A,Doerge R W.1994.Empirical threshold values for quantitative trait mapping.Genetics,138,963-971.
    张振臣,吕永华,马柱文,谢锐鸿,李集勤,袁清华,李淑玲,吕锦津,陈俊标.烟草品种“大叶密合”青枯病抗性遗传分析.中国烟草学报,2015,21(3):57-64.
    Salvi S,Tuberosa R.The crop QTLome comes of age.Curr Opin Biotechnol.2015,32:179-85.