氯化锂熔盐中八氧化三铀电解还原机理研究
详细信息    查看官网全文
摘要
将氧化物乏燃料直接电解还原为粗金属的过程是目前以"电解还原-电解精炼"为特征的主流干法后处理流程的重要步骤。二氧化铀(UO_2)是乏燃料的最主要成分,将致密的UO_2芯块转化为八氧化三铀(U_3O_8)粉末后,再进行电化学还原能有效提高还原速率。因此,以U_2O_8为研究对象,开展其在氯化锂(LiCl)熔盐中的电解还原机理研究,对于后处理干法流程的开发具有重要的现实意义。本研究在650℃的氯化锂(LiCl)熔盐中,采用循环伏安法和恒电位电解法,研究了U_3O_8的电解还原行为。并且对于电解后的样品,运用XRD、SEM等手段,分析了其组成和形貌,并推测了相应的还原机理。
Direct reduction of spent oxide fuel to mix-metal is the key step of an important dry reprocessing process,which is feature with "Electroreduction-Electrorefinning".UO_2 is the main component in spent fuel.The transform of compact UO_2 pellet to U_3O_8 powder could effectively improve the electroreduction rate.Therefore,taking U_3O_8 as research object,studying its electrochemical behaviors during the electroredction process has certain practical significance for the development of this process.In this paper,the electroreduction behaviors of U_3O_8 in molten LiCl(650℃) were studied using cyclic voltammetry,constant potential electrolysis technology.The after-electrolysis products were analyzed by XRD and SEM.Finally,and a reduction mechanism was also proposed.
引文
[1]Li S X,Johnson T A,Westphal B R,Goff K M,et al.Electrorefining Experience for Pyrochemical Processing of Spent EBR-ⅡDriver Fuel[C].GLOBAL 2005,2005:Tsukuba,Japan.
    [2]Benedict R W,Solbrig C,Westphal B,et al.Pyroprocessing Progress at Idaho National Laboratory[C].Global2007.2007.:Idaho,USA.
    [3]Karell E J,Pierce R D,Mulcahey T P.Treatment of oxide spent fuel using the lithium reduction process[R].Argonne National Lab.,IL(United States):1996.
    [4]Herrmann S,Li S X,Simpson M.Electrolytic Reduction of Spent Light Water Reactor Fuel[J].Journal of nulear science and technology.2007,44(3):361-367.
    [5]Park B H,Lee I W,Seo C S.Electrolytic reduction behavior of U_3O_8 in a molten LiCl-Li_2O salt[J].Chemical Engineering Science,2008,63(13):3485-3492.
    [6]Sakamura Y,Kurata M and Inoue T.Electrochemical reduction of UO_2 in molten CaCl_2 or LiCl[J].Journal of Electrochemistry Society,2006.153(D31).
    [7]Iizuka M,Inoue T,Ougier M,Glatz J P.Electrochemical reduction of(U,P)O_2 in molten LiCl and CaCl_2electrolytes[J].Journal of Nuclear Science and Technology,2007.44(5):801-813.
    [8]Lizuka M,Sakamura Y,Inoue T.Electrochemical reduction of(U-40Pu-5Np)O_2 in molten LiCl electrolyte[J].Journal of Nuclear Materials,2006.359:102-113.
    [9]Jeong S M,Park S B,Hong S S,Seo C S,Park S W.Electrolytic production of metallic uranium from U_3O_8 in a20-kg batch scale reactor[J].Journal of Radioanalytical and Nuclear Chemistry,2006.268(2):349-356.
    [10]Goff K M,Simpson M F.Dry Processing of Used Nuclear Fuel[C].GLOBAL 2009,2009:Paris,France.
    [11]Inoue T,Koch L.Development of pyroprocessing and its future direction[J].Nuclear Engineering and Technology,2008.40(3):183-190.
    [12]Gao P,Jin X B,Wang D H,Hu X H,et al.A quartz sealed Ag/AgCl reference electrode for CaC12 based molten salts[J].Journal of Electroanalytical Chemistry,2005(579):p.321-328.
    [13]Seo C S,Park S B,Park B H,Jung K J,Park S W,Kim S H.Electrochemical study on the reduction mechanism of uranium oxide in a LiCl-Li_2O molten salt[J].Journal of Nuclear Science and Technology,2006.43(5):587-595.