热休克蛋白70对LPS诱导的急性肝损伤的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨热休克蛋白70(HSP70)对脂多糖(LPS)诱导的急性肝损伤发生及对肝脏信号转导的影响。
     方法:实验1.1.雄性昆明小鼠24只,给予亚砷酸钠(SA)8mg/kg腹腔注射,分别于3,6,9,12,24h(n=4)在戊巴比妥钠麻醉下开腹取肝,用Western blotting测定HSP70的表达高峰。1.2.雄性昆明小鼠66只,随机分为三组,(1)对照组:腹腔注射0.9%NaCl 0.2 ml;(2)LPS组:腹腔注射LPS 5mg/kg;(3)SA+LPS(SA)组:于前一晚8时给予腹腔注射SA8mg/kg,12h后即次日早8时腹腔注射LPS,剂量与LPS组相同。各组动物分别于注射生理盐水或LPS后0.5h(n=4)、1.5h(n=8)、6h(n=10),在戊巴比妥钠麻醉下经眼内眦静脉采血、开腹取肝,用于血浆ALT、肝脏MDA、TNF-α、GSH含量和GSH/GSSG测定。1.3.雄性昆明小鼠30只随机分为三组,处理同实验1.2观察其存活率。实验2.雄性昆明小鼠36只,随机分为两组,(1)对照组(n=18):腹腔注射0.9%NaCl 0.2 ml;(2)SA组(n=18):SA8mg/kg腹腔注射,所有动物均于12h后自小鼠尾静脉注入按1∶5稀释的印度墨汁,测定枯否细胞吞噬指数k及其校正值a。实验3.动物和分组同实验1.2,分别于生理盐水或LPS注射后0.5h(n=4)、1.5h(n=8)、6h(n=10),在戊巴比妥钠麻醉下开腹取肝脏,用Western blotting方法检测肝脏HSP70、NF-κB、I-κB、TLR4、CD14、IRAK-M、TNF-α、MEK1/2、ERK1/2、p38MAPK、STAT1、STAT3蛋白的表达及磷酸化水平。
     结果:SA预处理可诱导肝脏HSP70表达上调,明显减轻LPS所致急性肝损伤。经SA预处理后动物血浆ALT活性和肝脏MDA、GSSG含量下降,而GSH含量、GSH/GSSG比值则升高。肝匀浆的TNF-α测定结果表明,SA组TNF-α含量明显低于肝损伤组(p<0.05)。HSP70表达上调可明显提高小鼠生存率与损伤组相比有统计学差异(p<0.05)。SA预处理可减弱LPS诱导肝脏TLR4、CD14、NF-κB、及TNF-α的表达上调,增强I-κB蛋白表达上调及MEK1/2、ERK1/2、p38MAPK蛋白磷酸化。SA预处理后可减弱STAT1蛋白磷酸化的表达,但对STAT3蛋白磷酸化则无明显影响。
     结论:HSP70主要通过抑制LPS介导的NF-κB信号通路,使TNF-α释放减少,从而减轻LPS诱导的急性肝损伤。
Subject:To investigate the effect of HSP70 on the LPS induced acute liver injury and LPS induced liver signal transduction.
     Methods:The experiment(Exp)1.1 SA 8mg/kg i.p.At 3,6,9,12,24h the liver was extirpated with carbrital anaesthesia and the proteins extracted from livers was assayed for the expression of HSP70.1.2 The Kunming mice were divided randomly into three groups.(1)control: 0.9%Sodium Chloride 0.2 ml,i.p..(2)LPS group:LPS 5mg/kg,i.p..(3)SA+LPS(SA)group:SA 8mg/kg,i.p.were administered on prenight 8pm then treated with i.p injection of LPS 5mg/kg,12h later.The blood was gathered from i.p.eye vein and liver was excised with carbrital anaesthesia after LPS or 0.9%Sodium Chloride injected at 0.Sh(n=4),1.5h(n=8)and 6.0h(n=10)for ALT, MDA,TNF-α,GSSG,GSH and GSH/GSSG assays for each groups.1.3.The animal and groups were same as Exp 1.2 in order to observe suvival rate o Exp 2.The experimental mice were divided randomly into two groups.(1)control:0.9%Sodium Chloride intraperitoneal injections.(2)SA. SA.intraperitoneal injections 8mg/kg.After 12h,India ink 1:5 diluted with germ free physiological saline was injected into the vail vein in each group rats.To calculate phagocytic index k and its correction a.Exp 3.The animal and groups were same as Exp 1.2(1)control:0.9%Sodium Chloride 0.2 ml,i.p..(2)LPS group:LPS 5mg/kg i.p..(3)SA+ LPS(SA)group:SA 8mg/kg,i.p.was administered on prenight(8pm),then treated with i.p injection of LPS 5mg/kg,12h later.The livers were excised in anaesthetic state by carbrital after LPS or 0.9%Sodium Chloride injected at 0.5h, 1.5h and 6h and the protein extracted from livers was assayed for the phosphorylation level of MEK1/2,ERK1/2,p38MAPK,STAT1,STAT3 and expression of TLR4,NF-κB,I-κB,CD14, IRAK-M and TNF-αby western blotting analysis.
     Results:HSP70 can expression and LPS-induced acute liver injury could attenuated significantly by SA pretreatment.The plasma ALT activity and liver MDA、GSSG contant were decreased remarkably by SA preteatment and the GSH and GSH/GSSG assays of liver was increased significantly.In LPS treatment groups,LPS stimulation increased plasma level of TNF-αexpression in the liver,in which the peak values of plasma TNF-αin SA group were much lower than LPS group(p<0.05).HSP70 can increase survive rate of mice compare to LPS group(p<0.05). CD14、TLR4、NF-κB、NF-αwere decreased significantly by SA pretreatment.And I-κB、p-MEK1/2,and p-ERK1/2、p-p38MAPK could increased.The phosphorylation of STAT1 was appeared to decreased after SA pretreatment,but the phosphorylation of STAT3 appear to no obviously change.
     Conclusion:SA pretreatment can induce expression of HSP70 of mice,partially inhibited LPS induced NF-κB signalling pathway and made TNF-αless releasing,to reduce LPS induced acute liver injury significantly.
引文
[1]Naito M,Hasegawa G,Takahashi K.Development,differentiation and maturation of Kupffer ceils.Microsc Res Teach,1997,39(4):350-358
    [2]Parker S J,Warkins PE.Experimental models of Gram-negative sepsis.Br J Surg,2001,88(1):22-30
    [3]Landmann R,Scherer F,Schumann R,et al.LPS directly induces oxygen radical production in human monocytes via LPS binding protein and CD 14.J Leukoc Biol,1995,57:440-449
    [4]吴其夏.病原菌毒素对组织细胞的作用见:王迪浔,金惠铭主编.人体病理生理学北京:人民卫生出版社.2002;247-260.
    [5]Fujihara M,Muroi M,Tanamoto K,et al.Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide:roles of the receptor complex[J].Pharmacol Ther,2003;100(2):171-194.
    [6]Chiao CW,Lee SS,Wu CC,et al.Thaliporphine increases survival rate and attenuates multiple organ injury in LPS-induced endotoxaemia[J].Naunyn schmiedebergs Arch Pharmacol.2005;371(1):34-43.
    [7]Landmann R,Scherer F,Schumann R,et al.LPS directly induces oxygen radical production in human monocytes via LPS binding protein and CD14.J Leukoc Biol 1995,57:440-449.
    [8]Han J,Lee JD,Bibbs L,et al.A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells.Science 1994,265(5173):808-811.
    [9]Adams JL,Badger AM,Kumar S,et al.p38 MAP kinase:molecular target for the inhibition of pro-inflammatory cytokines.Prog Med Chem 2001,38:1-60.
    [10]Bowie A,O'Neill LA.Oxidative stress and nuclear factor-kappaB activation:a reassessment of the evidence in the light of recent discoveries.Biochem Pharmacol 2000,59:13-23.
    [11]Del Razo LM,Quintanilla-Vega B,Brambila-Colombres E,et al.Stress proteins induced by arsenic[J].Toxicol ApplPharmacol,2001,177(2):132-148.
    [12]Snoeckx LH.E.,RN Comelussen,FA.V Nieuwenhoven et al.Heat Shock Protein and Cardiovascular Pathophysiology.Physiol Rev,2001;81:1461-1497
    [13]Schlesinger MJ.How the cell cope with stress and the function of heat shock proteins.Pediatr.Res.1994;36:1-6
    [14]Hewett JA,Roth RA.Hepatic and extrahepatic pathobiology of bacterial lipopolysaccharide.Phafmacl Rev.1993;45:382-411.
    [15]Mordson DC,Silverstein R,Luchi Metal.Structure-function relationships of bacterial endotoxin.Infectious Disease Clinic of North America.1999;13:313-316.
    [16]Tsukimi Y,Okabe S.Recent advances in gastrointestinal pathophysiology:role of heat shock proteins in mucosal defense and ulcer healing.Biol Pharm Bull 2001;24:1-9
    [17]Wang Q,Sun X,Pritts TA,Wong HR,Hasselgren PO.Induction of the stress response increases interleukin-6 production in the intestinal mucosa of endotoxaemic mice.Clin Sci(Colch)2000;99:489-496
    [18]Latchman DS.Heat shock proteins and cardiac protection.Cardiovasc Res 2001;51:637-646
    [19]Jayakumar J,Suzuki K,Khan M,Smolenski RT,Farrell A,Latif N,Raisky O,Abunasra H,Sammut IA,Murtuza B,Amrani M,Yacoub MH.Gene therapy for myocardial protection:transfection of donor hearts with heat shock protein 70 gene protects cardiac function against ischemia-reperfusion injury.Circulation 2000;102:Ⅲ302-306
    [20]King YT,Lin CS,Lin JH,Lee WC.Whole-body hyperthermia-induced thermotolerance is associated with the induction of heat shock protein 70 in mice.J Exp Biol 2002;205:273-278
    [21]Dillmann WH.Heat shock proteins and protection against ischemic injury.Infect Dis Obstet Gynecol 1999;7:55-57
    [22]Kawana K,Miyamoto Y,Tanonaka K,Han-no Y,Yoshida H,Takahashi M,Takeo S.Cytoprotective Mechanism of Heat Shock Protein 70 against Hypoxia Reoxygenation Injury.J Mol Cell Cardiol 2000;
    [23]韩德五.肠源性内毒素血症与肝病—肝衰竭的IETM学说.北京:中国科学技术出版社,2004,55-61.
    [24]Delia D,Aiello A,Meroni L,et al.A Role of antioxidants and intracellular free radicals in retinamide induced cell death.Carcinogenesis.1997,18:943-948
    [25]陈缓,周玫 主编自由基与衰老.第1版,北京:人民卫生出版社.2004:1-9
    [26]Chakraborti T,Das S,Mondal M,Roychoudhury S,Chakraborti S.Oxidant,mitochondria and calcium:an overview.Cell Signal,1999,11(2):77285
    [27]Bandyopadhyay D,Chattopadhyay A,Ghosh G,Datta AG.Oxidative stress2induced ischemie heart disease:protection by antioxidants.Curr Med Chem,2004,11(3):3692387
    [28]Mathison JC and Ulevitch RJ.The clearance,tissue distribution,and cellular localization of intravenously injected lipopolysaccharide in rabbits.J Immunol 1979,123:2133-2143.
    [29]Zlydaszyk JC and Moon RJ.Fate of 51Cr-labeled lipopolysaccharide in tissue culture cells and livers of normal mice.Infect Immun 1976,14:100-105.
    [30]Nolan JP.The role ofendotoxin in liver injury.Gastroenterology 1975,69:1346-1356.
    [31]Nolan JP and Camara DS.Intestinal endotoxins as co-factors in liver injury.Immunol Invest 1989,18:325-337.
    [32]Wulf Droge.Free Radicals in the Physiological Control of Cell function.Physiol Rev,2002,82(10):47-95
    [33]Frisard,Madlyn,Ravussin and Eric.Energy Metabolism and Oxidative Stress:Impact on the Metabolic Syndrome and the Aging Process.Endocrine.2006,29(1):27-32
    [34]Finkel T,Holbrook NJ.Oxidants,oxidative stress and the biology of ageing.Nature.2000,408:239-247
    [35]Martindale JL,Holbrook NJ.Cellular response to oxidative stress:signaling for suicide and survival.J Cell Physiol.2002,192:1-15
    [36]Allen RG and Tresini M.Oxidative stress and gene regulation.Free Radio Biol Med.2000,28(3):463-499
    [37]徐莉,易静.活性氧与细胞增殖.国外医学肿瘤学分册.2002,29(4):250-255
    [38]Sauer H,Wartenberg M,Hescheler J.Reactive oxygen species and intercellular messengers during cell growth and differentiation.Cell Physiol Biochem.2001,11(4):173-186
    [39]Okoch GM.Regulation of the phagocyte respiratory burst by small GTP-binding proteins.Trends Cell Biol,1995,5:109-113
    [40]Bokoch,G.M.Regulation of the phagocyte respiratory burst by small GTP-binding proteins.Trends Cell Bio1.1995;5:109-113.
    [41]Finkel,T.Signal transduction by reactive oxygen species in non-phagocytic cells.J Leukocyte Biol.1999;65:337-340.
    [42]Trevisan M,Browne R,Ram M,etal.Correlates of markers of oxidative status in the general population.Am J Epidemiol.2001;15:348-356.
    [43]DA Parsell and S Lindquist,The function of heat shock proteins in stress tolerance:degradation and reactivation of damaged proteins,Ann Rev Genetics 1993,27:437-496.
    [44]胡明昌,贾力.热休克蛋白对急性肾损伤的保护作用.国外医学儿科学分册1995,22(6):313-316.
    [45]谷文萍.热休克蛋白70的研究进展.国外医学神经病学神经外科分册.1999,18(2):57-59
    [46]Liu Y,Steinacker JM.Changes in skeletal muscle heat shock proteins:Pathologial signifieanee[J].Front Biosc,2001,6(1):12225.
    [47]Wong HR.,Menendez IY,Ryan MA,Denenberg AG,Wispe JR.Increased expression of heat shock protein-70 protects A549 cells against hyperoxia.Am J Physiol 1998 Oct;275(4Pt1):L836-L841
    [48]Welch W.Mammalian stress response:Cell physiology structure/function of stress protein and implication for medicine and disease.Physiol Rev 1992;72(4):1063-1081
    [49]Polla,B.S,S.Kantengwa,D.Francosis,et al.Mitochondria are selective targets for the protective effects of heat shock against oxidative injury.Proc.Natl.Acad.Sci.USA 93:6458-6463,1996
    [50]Bidmon B,Endemann M,Muller T,Arbeiter K,Herkner K,Aufricht C.HSP-25 and HSP-90stabilize Na,K-ATPase in cytoskeletal fractions of ischemic rat renal cortex.Kidney Int 2002,62(5):1620-1627.
    [51]Giachelli CM,Jono S,Shioi A,Nishizawa Y,Mori K.Vascular calcification and inorganic phosphate.Am J Kidney Dis.2001,38(4 Suppl 1):34-37.
    [52]贾后军.热休克蛋白70与内毒素耐受性,创伤外科学杂志1999,1(2):124-125
    [53]Wright SD et al Science.1990:249(4975):1131
    [54]Nakagawa R,Naka T,Tsutsui H,et al.SOCS-1 participates in negative regulation of LPS responses.Immunity,2002,17:677-687
    [55]杨一新,李桂源LPS所介导的信号转导通路研究进展.中南大学学报2006,31(1)
    [56]Shishodia S,Koul D,Aggnrwal BB.Cyelooxygenase(COX)-2 inhibitor celecoxib abrogates TNF--induced NF--kappa B activation through inhibition of activation of I kappa B alpha kinase and Akt in human non-small cell lung carcinoma:corelation with suppression of COX-2synthesis[J].J lmmunol,2004,173(3):2011-2022.
    [57]Curry,H.A.,Clemens,R.A.,Shah,S.C.,Bradbury,M.,Botero,A.,Goswami,P.and Gius,D.(1999)Heat shock inhibits radiation-induced activation of NF-jB via inhibition of IjB kinase.J.Biol.Chem.274,23061-23067.
    [58]Yoo,C.,Lee,G.S.,Lee,C.T.,Kim,Y.W.,Han,S.K.and Shim,Y.S.(2000)Anti-inflammatory effect of heat shock protein induction is related to stabilization of IjBa through preventing IjB kinase activation in respiratory epithelial cells.J.Immunol.164,5416-5423.
    [59]Shanley,T.P.,Ryan,M.A.,Eaves-Pyles,T.and Wong,H.R.(2000)Heat shock inhibits phosphorylation of I-kappaBalpha.Shock 14,447-450.
    [60]Lomaga,M.A.,Yeh,W.C.,Sarosi,I.,Duncan,G.S.,Furlonger,C.,Ho,A.,Morony,S.,Capparelli,C.,Van,G.,Kaufman,S.,van der Heiden,A.,Itie,A.,Wakeham,A.,Khoo,W.,Sasaki,T.,Cao,Z.,Penninger,J.M.,Paige,C.J.,Lancey,D.L.,Dunstan,C.R.,Boyle,W.J.,Goeddel,D.V.and Mak,T.W.(1999)TRAF6 deficiency results in osteopetrosis and defective interleukin-1,CD40,and LPS signaling.Genes Dev.15,1015-1024.
    [61]Kobayashi,N.,Kadono,Y.,Naito,A.,Matsumoto,K.,Yamamoto,T.,Tanaka,S.and Inoue,J.(2001)Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis.EMBO J.20,1271-1280.
    [62]Baud,V.,Liu,Z.,Bennett,B.,Suzuki,N.,Xia,Y.and Karin,M.(1999)Signaling by proinflammatory cytokines:oligomedzation of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain.Genes Dev.13,1297-1308.
    [63]Chung,J.Y.,Park,Y.C.,Ye,H.and Wu,H.(2002)All TRAFs are not created equal:common and distinct molecular mechanisms of TRAF-mediated signal transduction.J.Cell Sci.115,679-688.
    [64]Deng,L.,Wang,C.,Spencer,E.,Yang,L.,Braun,A.,You,J.,Slaughter,C.,Pickart,C.and Chen,Z.J.(2000)Activation of theIjB kinase complex by TRAF6 requires a dimeric ubiquitinconjugatingenzyme complex and a unique polyubiquitin chain.Cell 103,351-361.
    [65]Feng GJ,Goodridge HS,Harnett MM,et al.Extracellular signalrelated kinase(ERK)and p38 mitogen-activated protein (MAP) kinases differentially regulate the lipopolysaccharide -mediated induction of inducible nitric oxide synthase and IL-12 in macro phages: Leishmania phosphoglycans subvert macrophage IL-12 productionby targeting ERK MAP kinase. J Immunol,1999,163:6403-6412
    [66] Wang Y, Li C, Wang X, Zhang J, Chang Z: Heat shock response inhibits IL-18 expression through the JNK pathway in murine peritoneal macrophages. Biochem Biophys Res Commun 296:742-748,2002.
    [67] Malhotra V, Wong HR: Interactions between the heat shock response and the nuclear factor-[kappa]B signaling pathway. Crit Care Med 30(suppl):S89-S95, 2002.
    [68] Carter Y, Liu WG, Stephens B, Carter G, Yang J, Mendez C: Heat shock protein (HSP72) and p38 MAPK involvement in sublethal hemorrhage (SLH)-induced tolerance. 1. J Surg Res 111:70-77,2003.
    [69] Marcella F, De Maio A: Enhanced LPS-induced TNF-[alpha] production in heat-shocked human promonocytic cells: regulation at the translational/post-translational level. Biochim Biophys Acta 1743:20-28,2005.
    [70] Kim SH, Johnson J, Shin TY, et al. Selenium Attenuates Lipopolysaccharide-Induced Oxidative Stress Responses Through Modulation of p38 MAPK and NF-kB Signaling. Pathways. Exp Biol Med 2004,229:203-213.
    [71] Carter B, Knudtson L, Monick M, et al. The p38 mitogen-activated protein kinase is required for NF-KB-dependent gene expression. The role of TATA-binding protein (TBP). J Biol Chem 1999,274:30858-30863.
    [72] Kisseleva T, Bhattacharya S, Braunstein J, et al. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene, 2002,285:1-24
    [73] Kim WH, Hong F, Radaeva S, et al.STAT1 plays an essential role in LPS/D-galactosamine-induced liver apoptosis and injury. Am J Physiol Gastrointest Liver Physiol,2003,285: G761-G768
    [74] Ozaki M, Suzuki S, Irani k. Redox factor-1/APE suppresses oxidative stress by inhibiting the racl GTPase. FASEB J, 2000,16:889-890
    [75] Hong F, Jaruga B, Kim W, et al.Opposing roles of STAT1 and STAT3 in T cell-mediated hepatitis:regulation by SOCS. J Clin Invest 2002;110:1503-1513.
    [1] Darveau P. Lipid A diversity and the innate host response to bacterial infection Curr Opin Microbiol 1998,1:36-42
    
    [2] Raetz CR. Biochemistry of endotoxins.Annu Rev Biochem, 1990, 59:129-170
    
    [3] Cohen J. The immunopathogenesis of sepsis. Nature, 2002,420:885-891
    
    [4] Jacquier-sarlin MR,Fuller K ,Dinh-Xuan AT , et aL Protective effects of HSP70 inflammation. Experirmentia, 1994; 50(11-12): 1031
    [5] Chu EK,Ribeiro SP,Slulsky AS.Heat stress increase survival rates in lipopolysaccharide stimulated rat [J].Crit Care Med,1997,25(10):1727-1732
    
    [6]Wong HR, Heat shock protein: fact, thoughts, and dreams [J].Shock, 1999, 12 (4): 323-325.
    [7] Yu B, Wright D. Catalytic properties of lipopolysaccharide (LPS) binding protein. Transfer of LPS to soluble CD14. J Biol Chem 1996,271:4100-4105.
    [8] Schumann R, Leong R, Flaggs W, et al. Structure and function of lipopolysaccharide binding protein.Science 1990,249:1429-1431.
    [9] Jiang JX, Diao YF, Tian KL, et al. Effect of hemorrhagic shock on endotoxin induced TNF production and its molecular mechanism. Shock, 1997, 7(3):206-212
    [10] Schumann RRetal. Science. 1990: 249: 1429
    
    [11] Jack R Set al. Nature, 1997; 389: 742
    [12]Haziot A et al. J Immunol, 1988; 141(2): 547
    [13] Wright SD et al Science. 1990: 249(4975): 1131
    
    [14] Schumann R, Leong R, Flaggs W, et al. Structure and function of lipopolysaccharide binding protein.Science 1990, 249:1429-1431.
    [15] Wright D, Ramos A, Tobias S, et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990,249:1431-1433.
    [16] Ulevitch J, Tobias S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin.Annu Rev Immunol 1995, 13:437-457.
    [17] Van ES, Van TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Micro biol Rev, 2003,16(3):379-414
    [18] Parviz AN, Hacker H, Mark R. Bacterial CpG- DNA and lipopolysaccharides activate Toll - like receptors at distinct cellular compartments. Eur J Immunol, 2002, 32 (7): 1958-1968
    [19] Hashimoto C, Hudson KI., Anderson KV The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell. 1988; 52: 269-79.
    [20] Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity inthe Drosophila embryo: the induction of polarity by the Toll gene product. Cell. 1985;42: 791-8.
    [21] Lemaitre regulatory B, Nicolas E, Michaut 从Reichhart JM, Hoffmann JA. The dorsoventral gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86: 973-83.
    [22] Medzhitov R, Preston-Hurlburt P, Janeway A. A human homologue of the Drosophila Toll protein signals activation of adaptative immunity. Nature 1997, 388:394-397.
    [23] Aderem A. Role of Toll-like receptors in inflammatory response in macrophages. Crit Care Med 29,Suppl:S16-S18,2001.
    [24] Medzhitov R, Janeway A. The Toll receptor family and microbial recognition. Trends Microbiol 2001, 8:452-456.
    [25] Aderem A. Role of Toll-like receptors in inflammatory response in macrophages. Crit Care Med 2001,29:S16-S18.
    
    [26] Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335-76.
    [27] Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997; 388:394-7
    [28] Rock FL, Hardimanq Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Nail Acad Sci U S A. 1998; 95:588-93
    [29] Muzio M, Polentarutti N, Bosisio D, et al. Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. J Leukoc Biol 2000,67:450-456.
    [30] Jiang JX, Zhu PF, Wang ZG Receptor signal transduction-Mechanisms of Endotoxin actions. Crit Care & Shock, 2000, 3(1):35-40
    [31] Gangloff M, Gay N. MD - 2: the Toll'gatekeeper'in endotoxin signalling. Trends Biochem Sci, 2004,29(6):294-300
    [32] Medzhitov R, Preston-Hurlburt P, Kopp E, et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 1998,2:253-258.
    [33] Beutler B. TLR4: central component of the sole mammalian LPS sensor. Curr. Opin. Immunol 2000,12:20-26.
    [34] Cao Z, Henzel WJ. IRAK: a kinase associated with the interleukin-1 receptor. Science, 1996,271:1128-1131
    [35] Muzio M, Ni J. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science, 1997, 278:1612-1615
    [36] Ninomiya-Tsuji J, Kishimoto K, Hiyama A, et al. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999, 398: 252-256.
    [37] Irie T, Muta T, Takeshige K. TAK1 mediates an activation signal from Toll-like receptor(s) to nuclear factorkB in lipopolysaccharide-stimulated macrophages. FEBS Lett 2000,467:160-164.
    [38] Chen Z, Hagler J, Palombella J, et al. Signal-induced sitespecific phosphorylation targets IkBa to the ubiquitinproteasome pathway. Genes Dev 1995, 9:1586-1597.
    
    [39]杨一新,李桂源LPS所介导的信号转导通路研究进展.中南大学学报2006,31(1)
    
    [40] Shishodia S, Koul D, Aggnrwal BB. Cyelooxygenase(COX)-2 inhibitor celecoxib abrogates TNF-induced NF--kappa B activation through inhibition of activation of I kappa B alpha kinase and Akt in human non-small cell lung carcinoma: corelation with suppression of COX-2 synthesis[J]. J Immunol, 2004, 173(3): 2011-2022.
    [41] Christman W, Lancaster H, Blackwell S. Nuclear factor-kB: a pivotal role in the systemic inflammatory response syndrome and new target for therapy. Intens Care Med 1998,24:1131-1138.
    [42] Rice R, Ernst K. In vivo control of NF-kB activation by IkBa EMBO J 1993, 12: 4685-4746.
    [43] Chen Z, Gibson F, Robinson L. et al. MAP kinases. Chem. Rev, 2001, 101:2449 -2476
    [44] Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol.Rev, 2001, 81:807-869
    [45] Feng GJ, Goodridge HS, Harnett MM, et al. Extracellular signalrelated kinase (ERK) and p38 mitogen-activated protein (MAP) kinases differentially regulate the lipopolysaccharide -mediated induction of inducible nitric oxide synthase and IL-12 in macro phages: Leishmania phosphoglycans subvert macrophage IL-12 productionby targeting ERK MAP kinase. J Immunol, 1999,163:6403-6412
    [46]Weinstein SL, Sanghera JS, Lemke K, et al. Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen activated protein kinase in macrophages. J Biol Chem, 1992, 267:14955-14962
    [47] Gupta S, Barrett T, Whitmarsh AJ et al. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J, 1996, 15 (11): 2760
    [48] Minden A, Lin A, Claret FX et al. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTP ases Rac and Cdc42Hs. Cell, 1995, 81: 1147
    [49] Tournier C, Whitmarsh AJ, Cavanagh J et al. Mitogen-activated protein kinase 7 is an activator of the c-Jun NH2-terminal kinase. Proc Natl Acad Sci USA, 1997, 94 (14): 7337
    [50] Minden A, Lin A, Mcmahon M et al. Differential activation of ERK and JNK mitogen-activated protein kinase by Raf-1 and MEKK. Science, 1994, 266: 1719
    [51] Minden A, Lin A, Smeal T et al. c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinase. Mol Cell Biol, 1994, 14: 6683
    [52] Brewster JL, De Valoir T, Dwyer NC et al. An osmosensing signal transduction pathway in yeast. Science,1993, 259: 1760
    [53] Wang XS, Diener K, Manthey CL, et al. Molecular cloning and characterization of a aovel p38 mitogen-activated protein kinase. J Biol Chemi, 1997,272: 23668- 23674
    [54] Raingeaud J, Whitmarsh AJ, Barrett T et al. MKK3 and MKK6 regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transducion pathway. Mol Cell Biol, 1996, 16(3): 1247
    [55]Jiang Y,Chen CH,LI ZJ et al.Characterization of the structure and function of a new mitogen-activated protein kinase(p3813).JBiolChem,1996,271:17920
    [56]Ben-L Raingeaud JS,Gupta JS,Rogers M,et al.Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine.J.Biol.Chem,1995,270:7420-7426
    [57]Evies RS,Hooper R,Wilson HF,et al.Nuclear export of the stress-activated protein kinase p38mediated by its substrate MAPKAP kinase-2.Curr.Biol,1998,8:1049-1057
    [58]张琳,姜勇,张璐.p38蛋白激酶不同亚型在RAW26417细胞中的定位.第一军医大学学报,2000,20(3):193-196
    [59]袁志强,彭毅志.热休克蛋白一细胞的内源性保护蛋白[J].生命的化学,2001,21(6):503-505.
    [60]Lindquist S,Craig NE,The heat shock protein,[J]Annu Rev Genet,1998,22:671-677
    [61]Jaattela M.Heat shock proteins as cellular lifeguards.Ann Med 1999;31:261-271
    [62]Morimoto Rl,et al,Stress proteins in biology and medicine,CSHL-Press,1990,1-36
    [63]张玉秀,柴团耀,HSP70分子伴侣系统研究进展,生物化学与分子生物物理研究进展,1999,26(6):554-558
    [64]郑磊,颜晓慧.热应激时热休克蛋白70及其细胞保护作用[J].国外医学卫生学分册,1999,26(4):209-212.
    [65]谷文萍.热休克蛋白70研究进展[J].国外医学神经病学神经外科学分册,1999,26(2):57-59.
    [66]王曼芝.热休克蛋白与抗感染免疫[J].国外医学生理、病理科学与临床分册,1999,19(3):241-243.
    [67]贾后军.热休克蛋白70与内毒素耐受性,创伤外科学杂志1999,1(2):124-125
    [68]Tsukimi Y,Okabe S.Recent advances in gastrointestinal pathophysiology:role of heat shock proteins in mucosal defense and ulcer healing.Biol Pharm Bull 2001;24:1-9
    [69]Wang Q,Sun X,Pritts TA,Wong HR,Hasselgren PO.Induction of the stress response increases interleukin-6 production in the intestinal mucosa of endotoxaemic mice.Clin Sci(Colch)2000;99:489-496
    [70]Latchman DS.Heat shock proteins and cardiac protection.Cardiovasc Res 2001;51:637-646
    [71]Jayakumar J,Suzuki K,Khan M,Smolenski RT,Farrell A,LatifN,Raisky O,Abunasra H,Sammut IA,Murtuza B,Amrani M,Yacoub MH.Gene therapy for myocardial protection:transfection of donor hearts with heat shock protein gene protects cardiac function against ischemia-reperfusion injury.Circulation 2000;102:Ⅲ302-306
    [72]King YT,Lin CS,Lin JH,Lee WC.Whole-body hyperthermia-induced thermotolerance is associated with the induction of heat shock protein 70 in mice.J Exp Biol 2002;205:273-278
    [73]Dillmann WH.Heat shock proteins and protection against ischemic injury.Infect Dis Obstet Gynecol 1999;7:55-57
    [74] Kawana K, Miyamoto Y, Tanonaka K, Han-no Y, Yoshida H, Takahashi M, Takeo S. Cytoprotective Mechanism of Heat Shock Protein 70 against Hypoxia Reoxygenation Injury.J Mol Cell Cardiol 2000;
    [75] Snyder YM, Guthrie L, Evans GF, Zuckerman SH (1992) Transcriptiona inhibition of endotoxin-induced monokine synthesis following heat shock in murine peritoneal macrophages. J Leukoc Biol 51:181-187.
    [76] Ensor JE, Wiener SM, McCrea KA, Viscardi RM, Crawford EK, Hasday JD (1994) Differential effects of hyperthermia on macrophage interleukin-6 and tumor necrosis factor-alpha expression. Am J Physiol 266:C967-C974.
    [77]Kiang JG, Wang XD, Ding XZ, Gist I, Smallridge RC (1996) Heat shock inhibits the hypoxia-induced effects in rat thyroid FRTL-5 cells. Thyroid 6:475-483.
    [78] Mestril R, Chi SH, Sayen MR, Dillmann WH (1994) Isolation of a novel inducible rat heat shock protein (HSP70) gene and its expression during ischemia/hypoxia and heat shock. Biochem J 298:561-569.
    [79] Nakamura K, Rokutan K, Marui N, Aoike A, Kawai K (1991) Induction of heat shock proteins and their implication in protection against ethanol-induced damage in cultured guinea pig gastric mucosal cells. Gastroenterology 101:161-166.
    [80] Barbe MF, Tytell M, Gower DJ, Welch WJ (1988) Hyperthermia protects against light damage in the rat retina. Science 241:1817-1820.
    [81] Curry, H.A., Clemens, R.A., Shah, S.C., Bradbury, M., Botero,A., Goswami, P. and Gius, D. (1999) Heat shock inhibits radiation-induced activation of NF-jB via inhibition of IjB kinase. J. Biol. Chem.274,23061-23067.
    [82] Yoo, C, Lee, GS., Lee, C.T., Kim, Y.W., Han, S.K. and Shim,Y.S. (2000) Anti-inflammatory effect of heat shock protein induction is related to stabilization of IjBa through preventing IjB kinase activation in respiratory epithelial cells. J. Immunol. 164, 5416-5423.
    [83] Shanley, T.P., Ryan, M.A., Eaves-Pyles, T. and Wong, H.R.(2000) Heat shock inhibits phosphorylation of I-kappaBalpha.Shock 14,447-450.
    [84] Lomaga, M.A., Yeh, W.C., Sarosi, I., Duncan, GS., Furlonger,C, Ho, A., Morony, S., Capparelli, C,Van, G, Kaufman, S.,van der Heiden, A., Itie, A., Wakeham, A., Khoo, W., Sasaki, T.,Cao, Z.,Penninger, J.M., Paige, C.J., Lancey, D.L., Dunstan,C.R., Boyle, W.J., Goeddel, D.V. and Mak, T.W.(1999) TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 15,1015-1024.
    [85] Kobayashi, N., Kadono, Y, Naito, A., Matsumoto, K.,Yamamoto, T., Tanaka, S. and Inoue, J. (2001) Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis.EMBO J.20,1271-1280.
    [86] Baud, V., Liu, Z., Bennett, B., Suzuki, N., Xia, Y. and Karin, M. (1999) Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain.Genes Dev. 13,1297-1308.
    
    [87] Chung, J.Y., Park, Y.C., Ye, H. and Wu, H. (2002) All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci. 115,679-688.
    
    [88] Deng, L., Wang, C, Spencer, E., Yang, L., Braun, A., You, J.,Slaughter, C, Pickart, C. and Chen, Z.J.(2000) Activation of the I-kB kinase complex by TRAF6 requires a dimeric ubiquitinconjugatingenzyme complex and a unique polyubiquitin chain.Cell 103, 351-361.