机载合成孔径雷达方位预处理研究及其采用可编程逻辑器件的设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合电子所机载合成孔径雷达及其实时数字成像处理器的工程项
    目,对成像处理中的方位预处理部分进行了研究,提出了采用子孔径带通滤波
    的方位预处理方法,设计了基于CPLD芯片的方位预处理硬件电路。
     机载SAR实时数字成像处理的运算量很大,采用子孔径成像方法可以从
    方案上实现系统的并行处理,从而提高系统的处理能力。文中对此进行了详细
    的分析与讨论。
     但是采用子孔径成像方法,会加大方位预处理的工作量。文中详细分析了
    方位预处理的工作原理,提出了对子孔径进行带通滤波的处理方法,以有效地
    简化方位预处理工作。
     可编程逻辑器件(PLD)的应用可以有效提高系统的整体性能。在SAR
    信号处理领域以往大多只利用其进行一些简单的逻辑控制,很少用于复杂算法
    的实现。随着集成电路技术的发展,PLD性能已经完全能够满足构造复杂系统
    的需要。我们在这方面进行了尝试,采用模块化结构与线性流水线处理相结合
    的设计思想,设计了基于CPLD芯片EPF10K50VQC240-3的方位预处理器硬
    件电路,并将其成功地应用在了机载SAR实时数字成像处理器中,使系统在
    物理结构、运算效率、功耗、成本等方面都得到了改进。
     这是在电子所内首次利用PLD器件实现信号处理的复杂算法。标志了我
    们在硬件设计手段上的一次进步。它不仅改进了现有实时成像处理器系统的性
    能,而且积累了可贵的经验,为今后SAR信号处理系统工程设计提供了新的
    思路和手段。
This thesis focuses on the azimuth preprocessor in the imaging processor on the basis of the project “A real-time digital imaging processor of air-borne SAR (Synthesis Aperture Radar) system”of IEAS (The Institute of Electronics, Chinese Academy of Sciences). New azimuth preprocess method of band-pass filtering subaperture is proposed. Hardware of azimuth preprocessor is designed and realized with CPLD chip.
     The computation amount is large in the real-time digital imaging processor of air-borne SAR. The parallel process structure can be realized by sub-aperture method in system to improve its signal process ability, which is analyzed and discussed detailedly in thesis.
     But the sub-aperture method can cause many complexes in azimuth preprocess. We analyze detailedly the azimuth preprocess principle and propose the band-pass filtering sub-aperture method, which can simplify the process effectively.
     System performance can be improved by the application of PLD (Programmable Logic Device), which mostly was used in simple circuit control in SAR signal processing field formerly, rarely in complex algorithmic process realization. Along with the development of integrated circuit, PLD has been good enough for realizing complex system now. We explore this point, and design the azimuth preprocessor with the CPLD (Complex Programmable Logic Device) chip of EPFIOK5OVQC24O-3, which is module structured and linear pipeline processed. The application of this design in the real-time imaging processor results in the system performance improvement in many aspects such as the physical structure, run-time efficiency, power consumption and system cost.
    
    
    
    The azimuth preprocessor design with CPLD is the first time in realizing complex algorithm with PLD in IEAS. Its success marks our progress in hardware design technique. It not only improves the performance of the existing real-time imaging process system, but also brings us with valuable application experience and new design way in complex signal processing field for SAR system in future.
引文
[1] . 张澄波,《综合孔径雷达原理、系统分析与应用》,科学出版社,1989年。
    [2] . 扬士中,《合成孔径雷达》,国防工业出版社,1981年。
    [3] . C.W.Sherwin et al.,”Some Early Development in Synthetic Aperture Radar System”,IRE, Trans.MIL,Vol.6,No.2,PP.111-115,1962.
    [4] . Wiley,c.a.,“Synthetic Aperture Radars-A Paradigm for Technology Evolution”,IEEE Trans.AES-2l,No.3,PP.440-443,May,1985.
    [5] . Curlander,John C.,McDonough,Robert N.,“Synthetic Aperture Radar Systems and Signal Processing”,John Wiley & Sona,INC.,1991.
    [6] . C.J.Ausherman et al.,“Development in Radar Imaging”,IEEE,Trans.AES,Vol.20,No.4, PP.363-398,1982.
    [7] . Cutrona,L.J.,et al.,“On The Application of Coherent Optical Processing Techniques to Synthetic Aperture Radar”,Proceedings of the IEEE,Vol.54,No.8,PP.1026-1032,August, 1966.
    [8] . Rawson,R.,et al.,“Four Channel Simultaneous X-L Band Imaging SAR Radar”,9th International Symposium on Remote Sensing of Environment,PP.25 1-270,1974.
    [9] . Born,G.H.,et al.,“Seasat Mission Overview,Science”,Vol.204,No.29,PP.1405-1406, June,1979.
    [10] .Gonzalez,G.l.et al.,“Seasat SAR:Ocean Wave Detection Capabilities”,Science.Vol.204. No.29,PP.1418-1421,June,1979.
    [11] .Kozma,A.D.,et al.,“Multifrequency,Multipolarization SAR for Remote Sensing,” IGARSS’86,PP.715-719,1986.
    [12] .Sullivan,R.,et al.,“Polarimetric X/L/C-Band SAR”,Proceedings of 1988 IEEE Radar Conference,PP.9-14,1988
    [13] .W.E.Elachi et al.,Shuttle Imaging Radar Experiment”,Science,Vol.218,PP-996-1003, 1982.
    [14] .J.B.Cimino et al.,SIR-B“The Second Shuttle Imaging Radar Experiment”,IEEE Trans. GRS,Vol.24,NO.3,PP.445-452,1986.
    [15] . E.P.W.Attema,“The Active Microwave Instrument on-board The ERS-I Satellite”,Proc. IEEE,Vol.79,NO.6,PP.791-799,1991.
    [16] .Y.Nemoto et al.,“Japanese Earth Resources Satellite-l Synthetic Aperture Radar”,Proc. IEEE,Vol.79,No.6,PP.800-809,1991.
    [17] . R.Hom,“E-SAR:The Experimental Airborne L/C Band of DFVLR”,IGARSS.1988. 2. PP.1025-1026.
    [18] . S.N.Madsen,et al.,“The Danish SAR System:Design and Initial Tests”,IEEE Trans.on GE,1991,29(3) ,PP.417-425.
    
    
    [19] .Wolfgang Keydel,“SAR Technique and Technology.Its Present State of The Art with respect to User Requirement”,EUSAR’96,Konigswinter.Germany,PP.289-292,1996.
    [20] .王岩飞,“带通滤波重抽样实现 SAR 子孔径方向预处理”,中国航空学会信号与信 息处理专业第三届学术会议论文集,1998年。
    [21] .Lukin V.V.,Melnik V.P., Pogrebniak A.B.,Zilensky A.A.“Techniques and Algorithms of Speckle Noise Reduction for One-Look SAR Images”,Proc.EUSAR’96. Konigswinter,Germany.1996,PP. 167-170.
    [22] .G.Vv.Davidson“Some General Properties of SAR Signals and Processing Algorithms”,Proc. EUSAR’96,Konigswinter.Germany,1996,PP.261-266.
    [23] . Jinhao Yang,Jianguo Wang,Shunji Huang,“Speckle Filtering for SAR Images Based on Orthonormal Wavelet Transform”,Proc.EUSAR’96,Konigswinter,Germany,1996,PP.151-154.
    [24] .Li Gang,R.H.Pan and M.H.Zhu,"Spacebome SAR Moving Targets Imaging and Clutter Suppression Algorithms”,Proc.ISRAMT’97,Beijing,China,1997,PP.78-82.
    [25] .“Altera Data Book”.
    [26] .Kai Hwang,Advanced Computer Architecture,McGraw-Hill Inc,1993,Chapter 6.