电位法研究弱碱性树脂在不同介质环境中吸附有机酸的行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以D354弱碱性阴离子交换树脂为吸附剂,在不同的介质环境中(加入盐或葡萄糖作为第三组分),吸附低浓度的甲酸、乙酸、丙酸、丁酸、苯甲酸及其衍生物,采用电位法对吸附过程进行在线跟踪,利用固—液界面吸附动力学方程,求取表观吸附速率常数。着重研究D354树脂与有机酸在三元体系中的固—液吸附行为,结合盐效应理论,讨论了LiCl、NaCl、KCl、LiBr、NaBr、KBr、MgCl_2、BaCl_2、SrCl_2九种外加盐及葡萄糖对吸附速率的影响,寻找其吸附过程的规律,为树脂吸附有机酸的工业化生产,设计最佳工艺条件提供有价值的参数。
     实验结果表明:
     1.利用电位法对D354弱碱性阴离子交换树脂吸附有机酸的固—液吸附体系的吸附行为进行追踪,实验相对偏差小于4%,符合固—液吸附体系的实验要求。
     2.弱碱性阴离子交换树脂吸附低浓度有机酸的过程是遵循单分子层吸附机理的。
     3.外加盐对D354弱碱性阴离子交换树脂吸附低浓度有机酸起到加速作用,外加盐作为第三组分的三元体系的吸附速率大于二元体系的吸附速率。
     4.吸附速率随着外加盐浓度的增大而增大,且加入2-1价的盐(MgCl_2、BaCl_2、SrCl_2)的三元体系的吸附速率大于加入1-1价的盐(Licl、NaCl、KCl)三元体系的吸附速率。
     5.盐的浓度和酸的活度系数之间存在良好的线性关系,用盐效应理论能够对这一现象进行较好的解释:盐的加入主要起盐析作用,盐的浓度越大,盐析作用越强,盐析常数ks值越大,活度系数越大,因此吸附过程的吸附速率加快。
In this thesis, adsorption of low concentration organic acids such as formic acid, acetic acid, propane acid, and butanoic acid, benzoic acid and its derivate in different medium environment (salt or glucose was added as a third component) on weakly basic anion exchanger (D354) as adsorbent was studied. By potentiometric method, we could trace the adsorption process on-line. The apparent adsorption rate constant kt was calculated by the solid-liquid interface dynamics equation. In ternary system, the solid-liquid adsorption behavior of weakly basic anion exchanger (D354) and organic acids in ternary system was particularly researched. With the salt effect theory, the influence of medium (LiCl, NaCl, KC1, LiBr, NaBr, KBr, MgCl2, BaCl2, SrCl2 ) concentration on adsorption rate was discussed and the regularity of adsorption process was found. Valuable theory parameter will be provided for the industrialized production of the adsorption of organic acids on resin and the design of the optimal conditions for industrial art.
    The experiment results indicated that:
    1. The adsorption behavior in a solid-liquid system was traced by potentiometric method, the relative deviation was less than 4%, which was in accordance with the experimental requirement of solid-liquid adsorption system.
    2. The adsorption process of low concentration organic acids on weakly basic anion exchanger obeyed monolayer adsorption mechanism.
    3. The added salt had acceleration effect on the adsorption of organic acids in low concentration onto weakly basic anion exchanger (D354). The adsorption rate in ternary system was larger than that in binary system in case of added salt as a third component.
    
    
    
    4. The adsorption rate increased with an increase of the salt concentration. The adsorption rate of divalent salt (MgCl2,BaCl2,SrCl2 ) in a ternary system was larger than that of monovalent salt (LiCl, NaCl, KC1) in the same system.
    5.A good linear relationship is found between the concentration of the salt and the activity coefficient of acid. A good explanation can be given by salt effect theory; the addition of salt serve as salting-out. The larger of salt concentration, the stronger of salting-out, and then the larger of salting-out constant ks, the larger of activity coefficient, and the quicker of the adsorption rate.
引文
1钱庭宝,刘维林.离子交换树脂应用手册[M].天津:南开大学出版社,1989.
    2陈天书,王海霞,郭宏伟.化学工程师,2001,85(4):41.
    3黄朝霞,刘芙蓉,王志刚等.离子交换与吸附,1994,10(1):18.
    4王刚,陶祖贻.物理化学学报,1991,7(4):485.
    5王子镐.离子交换与吸附,1991,7(4):266.
    6王子镐.离子交换与吸附,1994,10(6):492.
    7胡友慧,黄裕杰.化学世界,1998,7:357.
    8邓旭,骆永寿.高校化学工程学报,1994,8(3):258.
    9朱珍,王竞.离子交换与吸附,1991,7(5):387.
    10许丽华.离子交换与吸附,1994,10(4):328.
    11杨超雄,吴锦远.离子交换与吸附,1995,11(3):237.
    12陈联成,林国良,李清彪,洪满水.离子交换与吸附,1999,15(2):171.
    13白姝,李玉龙,孙彦等.天津大学学报,1999,32(5):566
    14胡徐腾.清华大学学报(自然科学版),1998,38(6):34.
    15胡徐腾,张瑾,戴猷元.化工学报,2000,51(4):555.
    16胡徐腾,张瑾,戴猷元.离子交换与吸附,2000,16(3):193.
    17 V.M. Bhandari, V.A. Juvekar, and S.R. Patwardhan. Ind. Eng. Chem. Res.,1992,31(4),1060.
    18 V.M. Bhandari, V.A. Juvekar, and S.R. Patwardhan. Ind. Eng. Chem. Res.,1992,31(4),1073.
    19 V.M. Bhandari, V.A. Juvekar, and S.R. Patwardhan. Ind. Eng. Chem. Res.,1993,32(1),200.
    20 Takatsuji and Yoshida Sep. Sci&Tech.,1994,29(11):1473.
    21 AdamsBA and HolmesEL. J. Soc. Chem. Ind., (London),1975,54:17.
    22马振山.中成药,1997,19(12):40.
    23冯孝庭.吸附分离技术.北京:化学工业出版社,2000.
    24陈炳稔,何广平,凌莫育.应用化学,1997,14(6):75.
    25金家骏.液相化学反应动力学原理.上海科学技术出版社,1983.
    26金家骏.化学通报,1981,11:20.
    27黄子卿.电解质溶液理论导论.北京:科学出版社,1983.
    28庄国顺,陈松,艾宏韬.化学学报,1984,42:1085.
    29 Chen Bingren, He Ouangping, Ling Moyu. The 4th China-Japan-USA Symposium on Advance in Adsorption Separation Science and Technology. Guangzhou, 1997.396.
    30陈炳稔,何广平,刘小珠.化学通报,1998,10:43.
    31谢文蕙等.高等学校化学学报,1980,1(2):75.
    32李万杰,谢文蕙,黄子卿.高等学校化学学报,1985,6(4):351.
    
    
    33余训民,杨道武.长沙电力学院学报(自然科学版),2000,15(2):79.
    34余训民.贵州师范大学学报(自然科学版),2001,19(2):27.
    35杭州争光化工集团公司,产品说明书.
    36刘光,邱贞花.离子溶液物理化学.福建科学技术出版社,1987.
    37黄子卿.黄子卿选集.北京:科学出版社,1989.
    38沈玲.淮北煤师院学报,1998,19(1):61.