分子动力学模拟与自由能计算在药物分子设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机技术的飞速发展,计算机分子模拟在化学、生物化学以及分子生物学领域已经成为了十分重要和活跃的前沿课题。本文采用分子动力学模拟、量子力学从头算以及量子力学-分子力学相结合的多种方法对二胺基二硫醇类化合物 (99mTc-N2S2) 类脑显像配合物以及1-(5-氯吲哚-3-基)-3-羟基-3-(2-氢四唑-5-基) 丙烯酮 (5ClTEP) 类HIV-1整合酶抑制剂进行了综合研究。
    放射性核素脑显像技术在脑部疾病的医治中起着重要作用。通过计算表明, 99mTc-N2S2类配合物的脑吸收能力与它们的水化自由能相关。MD模拟结果显示BAT类配合物与MAMA类配合物的脑吸收值的大小依赖于它们的相对水化自由能;溶剂自洽反应场方法的计算结果表明同类配合物的脑吸收值取决于绝对水化自由能;QM/MM计算结果则证实了MAMA类配合物在水溶液中比BAT类配合物要稳定得多,因而更难以脱离水层穿越血脑屏障,而具有相对较小的脑吸收值。
    对HIV整合酶及其抑制剂的研究对抗艾滋病药物的研制具有重要意义。本论文通过模拟计算发现,5ClTEP分子主要是通过其中心的二酮酸 (3-羟基-3-丙烯酮) 对整合酶核心区a链中的活性氨基酸残基Glu152起到抑制作用,而与之相连的四唑基团和吲哚基团对5ClTEP与整合酶的结合起到稳定作用。此外5ClTEP抑制剂和Mg2+离子在与HIV-1整合酶的核心活性区域的作用中起着协同促进的抑制作用,二者的共同存在促进了体系的稳定性,并加强了对整合酶活性中心的作用能力。计算模拟还发现, 5ClTEP抑制剂中四唑基团对复合物体系的稳定作用远大于吲哚基团
With the rapid development of computer technology, computer aided molecular modeling has become a very important and active task in chemistry, biochemistry and molecular biology. In this dissertation, molecular dynamics simulations, quantum mechanical ab initio calculations, together with quantum mechanical/molecular mechanical (QM/MM) method have been used to study the brain imaging agents of 99mTc-N2S2 complexes and HIV-1 integrase inhibitor 1-(5-(2-Chloroindol)-3-yl)-3- hydroxy-3-(2H-tetrazol-5-yl)-propenone (5ClTEP).
    Radical brain imaging agents play important roles in the medical treatment of brain diseases. In this study, we found that the brain uptakes of the 99mTc-N2S2 complexes were influenced by their hydrate free energies. The MD simulations showed that the differences between the brain uptakes of bisaminodithiol (BAT) and monoamino-monoamide dithiol (MAMA) complexes were determined by their relative hydrate free energies. The calculations of self-consistent reaction field (SCRF) method illustrated that the brain uptakes of the complexes relied on their absolute hydrate free energies. Furthermore, the QM/MM results approved that MAMA complexes were more stable than BAT complexes in aqueous solutions, hence the MAMA complexes were difficult to cross the the intact blood brain barrier (BBB) and had lower brain uptakes than BAT complexes. The BAT complexes are one kind of the promising brain imaging medicines.
    The study of HIV integrase inhibitors is important in the research of anti-AIDS medicines. The MD simulations showed that the key part of the inhibitor 5ClTEP is the
    
    aryl (-diketo function group, which was bounded to the active site of the HIV-1 integrase (residue Glu152), and achieved inhibiting effect in the HIV-infected cells. The existence of Mg2+ cation bought a stronger inhibiting effect to the inhibitor, and this experimental result was approved by our MD simulations, which showed that the inhibitor 5ClTEP cooperated with Mg2+ cation in the stability of the whole complex system. The tetrazol and indole function groups of 5ClTEP were also helpful in the stability of the integrase-inhibitor complex system, however, the simulating results showed that the tetrazol group was more important than the indole ring, which would make help in further drug design of anti-AIDS medicines
引文
1 陈凯先. 生物大分子体系及其相互作用的计算机模拟. 生命科学. 1994, 6 (3) : 21-23
    2 Goodfellow J M, Moss D S, Computer Modeling of Biomolecular Process. New York: Ellis Horwood, 1992
    3 Warshel A, Computer Modeling of Chemical Reactions in Enzymes and Solutions. New York: Jonh Wiley & Sons, 1991
    4 Bash P A, Singh U C, Brown F K, Langridge R, and Kollman P A, Calculation of the Relative Change in Binding Free Energy of a Protein-inhibitor Complex. Science, 1987, 235: 574-576
    5 Rao B G, Tilton R F, and Singh U C, Free Energy Perturbation Studies on Inhibitor Binding to HIV-1 Proteinase. J. Am. Chem. Soc., 1992, 114: 4447-4452
    6 Warshel A, Sussman F and Hwang J K, Evaluation of Catalytic Free Energies in Genetically Modified Protein. J. Mol. Biol., 1988, 201: 139-159
    7 B Z Lu, W Z Chen, C X Wang and X J Xu, Protein Molecular Dynamics with Electrostatic Force Entirely Determined by a Single Poisson-Boltzmann Calculation. protein, 2002, 48:497-504
    8 Van Gunsteren W F, Protein Eng. 1988, 2: 5
    9 Jorgensen W L, Acc. Chem. Res. 1989, 22: 184
    10 Kollman P. Free energy calculations-applications to chemical and biochemical phenomena. Chem. Rev. 1993, 18: 2395-2417
    11 Williams, D H & Cox, J P L & Doig, A J et al. J. Am. Chem. Soc. 1991, 113: 7020
    12 王维宴. 胰岛素六聚体的分子动力学模拟研究. 北京工业大学硕士论文. 2002: 3-21
    13 Frenkel, Smit. Understanding Molecular Simulation -From Algorithms to Applications. 王文川译. 化学工业出版社. 2002: 1-9
    吴厚铭. 生物大分子溶液三维机构及分子间相互作用的波谱研究. 生命科学. 1994, 6 (3) :
    
    14 19-21
    15 Lybrand T P. Curr. Opin. Struct. Biol.. 1995, 5: 224-228
    16 Kollman P A. Curr. Opin. Struct. Biol.. 1994, 4: 240-245
    17 蒋华良, 胡增建, 陈建忠, 顾健德. 配体-受体相互作用的计算机模拟及其在药物设计中的应用. 化学进展. 1998, 10 (4): 427-441
    18 Kenneth M M Jr. Curr. Opin. Struct. Biol.. 1993, 3: 234-240
    19 阎隆飞,孙之荣. 蛋白质分子结构. 清华大学出版社, 1999: 266-271
    20 包士尧, 李文. 放射性核素脑显像在脑血管疾病中的应用. 中国血液流变学杂志. 2001, 11(1): 9-12
    21 曾毅,陈启民,耿运琪. 艾滋病毒及其有关病毒. 南开大学出版社, 1999: 1-4
    22 Murphy F. A. Et al.. Viral Taxonomy: Sixth Report of the International Committee on Taxonomy of Viruses. New York, Springer - Verlag. 1996: 193-203
    23 徐玉文, 赵桂森. 抗艾滋病药物研究进展. 中国药物化学杂志. 2002, 12 (2): 119-125
    24 肖苏龙. 人免疫缺陷病毒 1整合酶及其抑制剂的研究进展. 国外医学药学分册. 2002, 29 (3):157-161
    25 Mazumder A, Nea mati N, Oj wang JO, et. al.. Inhibition of the Human Immunodeficiency Virus Type I Integrase by Guanosine Quartet Structures. Biochemistry. 1996, 35 (43): 13762-13771
    26 Jing N, Marchand C, Liu J, et al.. Mechanism of Inhibition of HIV-1 Integrase by Gtetrad-forming Oligonucleotides in Vitro. Biol. Chem., 2000, 275 (28): 21460-21467
    27 Young D C. Computational Chemistry: A practical Guide for Applying Techniques to Real-World Problems. New York, John Wiley & Sons, 2001
    28 徐光宪, 黎乐民. 量子化学: 基本原理和从头计算法 (上, 中, 下). 北京, 科学出版社. 1980
    29 唐敖庆. 量子化学. 北京, 科学出版社. 1982
    30 Pople J A. Nobel lecture: Quantum Chemical Models. Rev. Mod. Phys. 1999, 71(5): 1267-1274
    
    
    31 Frisch M J, Trucks G W, Schlegel H B, Pople J A. Gaussian, Inc., Pittsburgh PA, 1998
    32 Kohn W. Nobel Lecture: Electronic Structure of Matter - Wave Functions and Density Functionals. Rev. Mod. Phys. 1999, 71(5): 1253-1266
    33 Mulliken R S. J. Chem. Phys. 1955, 23: 1833-1840, 1841-1846
    34 Reed A E, Curtiss L A, Weinhold F. Intermolecular Interactions From a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88(6): 899-926
    35 Bader R F W. Atoms in Molecules: A Quantum Theory. Oxford, Oxford Univ. Press. 1990
    36 Cossi M, Rega N, Scalmani G, Barone V. Energies, Structures, and Electronic Properties of Molecules in Solution With the C-PCM Solvation Model. J. Comp. Chem. 2003, 24, 6: 669-681
    37 Cossi M, Barone V, Cammi R, Tomasi J. Ab initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996, 255: 327-335
    38 汪文川等译. 分子模拟-从算法到应用. 北京, 化学工业出版社. 2002
    39 Ercolessi F. A molecular dynamics primer. Spring College in computational physics, ICTP, Trieste, Italy. Internet: www.sissa.it/furio. 1997
    40 Pearlman D A, Case D A, Caldwell J W, Ross W S, Cheatham III T E, DeBolt S, Ferguson D, Seibel G, Kollman P. AMBER, A Package of Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate the Structural and Energetic Properties of Molecules. Comp. Phys. Commun. 1995, 91: 1-41
    41 Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S, Karplus M.CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comp. Chem. 1983, 4: 187-217
    W. F. Van gunsteren, S. R. Billeter, A. A. Eising et al. Biomolecular Simulation: The GROMOS96 manual and User Guide, Vdf Hochschulverlag AG an der ETH Zurich, Zurich,
    
    42 Switzerland, 1996
    43 SYBYL. Version 6.9. Tripos Associates. St. Louis, MO, 2002
    44 A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III and W. M. Skiff, J. Am. Chem. Soc. 1992, 114: 10024
    45 S. L. Mayo, B. D. Olafson and W. A. Goddard, J. Phys. Chem. 1990, 94: 8897
    46 Allinger. N. L., J. Am. Chem. Soc. 1977, 99: 8127-8134
    47 Van der Spoel D, van Buuren A R, Apol E, Meulenhoff P J, Tieleman D P, Sijbers A L T M, Hess B, Feenstra K A, Lindahl E, van Drunen R, Berendsen H J C. Gromacs User Manual version 3.0. Nijenborgh 4 9747 AG Groningen, The Netherlands. Internet: www.gromacs.org. 2001
    48 Ryckaert J P, Ciccotti G, Berendsen H J C. Numerical Integration of the Cartesian Equations of Motion of A System With Constraints. J. Comp. Phys. 23: 327-341 (1977)
    49 Warshel A. Computer Modeling of Chemical Reactions in Enzymes and Solutions. New York, John Wiley & Sons, Inc. 1991
    50 Wang W, Donini O, Reyes C M, Kollman P A. Struct Biomolecular Simulations: Recent Development in Force Fields, Simulations of Enzyme Catalysis, Protein-Ligand, Protein-Protein, and Protein-Nucleic Acid Noncovalent Interactions. Annu Rev Biophys. 2001, 30: 211-243
    51 Jan Hermans, Lu Wang. Inclusion of Translational and Rotational Freedom in Theoretical Estimates of Free Energies of Binding .Application to a complex of Benzene and Mutant T4 Lysozyme. J. Am. Chem. Soc. 1997, 119: 2707-2714
    52 Hermans. J, Shandar, S. Isr. J. Chem. 1986, 27: 225-227
    53 Zhang, L., Hermans, J. Proteins: Struct. Funct.,Genet. 1996, 24:433-438
    54 Roux, B.Nina, M.Smith, J. C. Biophys. 1996, 71:670-680
    55 Gilson MK,Given JA,Bush BL,McCammon JA, Biophys J. 1997,72:1047-1069
    
    
    56 Dapprich S, Komaromi I, Byun K. S, Morokuma K, Frisch M. J. A New ONIOM Implementation in Gaussian98. Part I. The Calculation of Energies, Gradients, Vibrational Frequencies and Electric Field derivatives. J. Mol. Structure: Theochem. 1999, 461-462
    57 Shunichi O., Karl P. et al. Small and Neutral TcvO BAT, Bisaminoethanethiol (N2S2) Complexes for Developing New Brain Imaging Agents. Nuclear Medicine & Bio. 1998, 25: 134-140
    58 Zhi-Ping Z., Karl P.. Nuclear Medicine & Bio. 1999, 26: 217-224
    59 贾红梅, 刘伯里, 孟昭兴. ⅩⅢ. 99mTc 配合物的溶剂化自由能与其脑吸收值的关系. 核化学与放射化学. 2002, 24 (1): 42-50
    60 孟昭兴,贾红梅. 99mTc标记的N2S2脑显像剂构效关系的研究. 核化学与放射化学.1998, 20 (1): 15-18
    61 Dunning T. H. Jr. and Hay P. J.. in Modern Theoretical Chemistry, Ed. H. F. Schaefer, III, Plenum, New York. 1976, 3
    62 Hay P. J. and Wadt W. R.. J. Chem. Phys. 1985, 82: 270-283
    63 Hermans J.. Sigma documentation. University of North Carolina. 1994
    64 Jans H., Wang L., et al. Inclusion of Loss of Translational and Rotational Freedom in Theoretical Estimates of Free Energies of Binding. Application to a Complex of Benzene and Mutant T4 Lysozyme. J. Am. Chem. Soc. 1997, 119: 2707-2714
    65 Ryckaert J. P., Ciccotti G., et al. J. Comput. Phys. 1977, 23: 327-341
    66 Berendsen H. J.,Grigera J. R., Straatsma T. P.. J. Phys. Chem. 1987, 91:6209-6216
    67 贾红梅, 马晓慧等. 科学通报. 2002,47(9): 679-683
    68 Joseph PG. Retroviral integrase: conserved sequence information as a guide to understanding structure and function of the retroviral and bacterial IS3 DD(35) E transposases. J. Mol. Struct (Theochem). 1998, 423 (1/2): 41-57
    Pommier Y, Marchand C, Neamatic N. Retroviral intrgrase inhibitors year 2000: update and
    
    69 perspectives. Antiviral Res. 2000, 47 (3): 139-148
    70 Neamati N, Sunder S, Pommier Y. Design and discovery of HIV-1 integrase inhibitors. Ther Focus. 1997, 2 (11): 486-498
    71 Caumont A, Jamieson G, De Soultrait VR et al.. High affinity interaction of HIV-1 integrase with specific and non-specific single stranded short oligonucleotides. FEBS Lett. 1999, 455 (1/2): 154-158
    72 Neamati N, Turpin JA, Winslow HE, et al.. Thiazolothiazepine inhibitors of HIV-1 integrase. J Med Chem. 1999, 42 (17): 3334-3341
    73 H. J. C Berendsen, J. P. M. Postma, W. F. Van Gunsteren et al. Molecular dynamics with coupling to an external bath. J. Chem. Physics. 1984, 81 (8): 3684-3690
    74 WebElementsTM Periodic Table (professional edition). http://www.webelements.com.