钢结构微波塔标准化设计与经济性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对塔架设计中的小工程、大工作量等问题,对钢结构微波塔标准化选型、设计方法、塔架基础形式选择及其经济性影响因素进行了研究。
     为适应不同铁塔高度需要,根据多年来工程实践与应用,本文提出了钢结构微波塔标准化设计的基本思路,对钢结构微波通信塔在平面、立面、腹杆形式等方面如何进行选型进行了分析和研究,折线形四边形角钢塔架是目前最易实现标准化的一种塔架形式,也是最经济合理的。
     塔结构的荷载比较多,其中风荷载起主要作用。本文对钢结构微波塔的荷载计算、内力分析及截面设计进行了系统的阐述。
     基础及地基造价在钢结构微波塔整个工程造价占有较大比重,用桩基代替独立基础作为微波塔的基础无论是受力特点还是节省工程造价都是一种较理想的基础形式,特别是在工程造价方面,桩基造价只占总造价的1/15~1/20,可取得明显的经济效益。
     最后从平面选型、立面选型、腹杆体系选择、基础形式选择等几个方面对钢结构微波塔经济性的影响进行了分析和总结。本文给出了折线形四边形角钢塔、直线形四边形角钢塔和折线形钢管塔三种塔架总重与塔高的关系公式,有一定的实用价值,可供设计人员参考。
From the point of view of engineering application, study on the structural configuration, design method, foundation style and project cost has been carried out in (his paper aiming at the problems in existence such as the small scale project but the large work hours etc.
    According to the engineering practice of many years, the basic method for standardization design of microwave tower which is adapt to variational height has been proposed in this paper. Research on the structural configuration, web members form etc. shows that the broken-line quadrilateral angle steel tower is the most feasible and economic structural form for microwave steel tower.
    Discourse upon the load calculation, internal force analysis and selection of member size have been put up in this paper and wind load has great effect on the microwave tower.
    Foundation cost has occupied a considerable great percentage in the total engineering investment. As an alternative of individual footing, pile is a perfect foundation style of microwave tower from the point of view of the structural performance and the saving of project cost. Especially in the project cost, the cost of pile is the 5 percent to 6.7 percent of total engineering cost, so pile has visible economic effect.
    Finally based on the analysis and comparison of the economic benefit from some aspects such as the structural configuration, web system and foundation style, this paper has brought forward the empirical formulae reflecting the relation of the weight and height about the broken-line quadrilateral angle steel tower, the rectilineal quadrilateral angle steel tower and tube steei tower, which have importance value for engineering designers.
引文
[1] 王肇民.高耸结构设计手册.北京:中国建筑工业出版社,1995.11
    [2] 王肇民,U. Peil. 塔桅结构.上海:同济大学出版社,1989.12
    [3] 成举权,沈选忠.钢塔架结构设计浅析.天然气与石油,1995
    [4] [日]渡边邦夫,大责茂树,内藤龙夫,近角真一著,周耀坤,腾百译.钢结构设计与施工.北京:中国建筑工业出版社,2000.6
    [5] 李国强.我国高层建筑钢结构发展的主要问题.建筑结构学报,1998(2):12~17
    [6] 薛发.积极稳健地推动高层建筑钢结构的发展.建筑结构,1998(1):5~9
    [7] 王国周.中国钢结构五十年.建筑结构学报,1999.10:1~4
    [8] 张洁,李国强.钢结构在我国高层建筑中应用现状的述评(上).四川建筑科学研究,1999.2:1~6
    [9] 钢结构工程的现状与发展.建筑技术与管理高级研修班授课提纲.北京:建设部人事教育劳动司,建设部建筑业司,建设部建筑监理司,1997.11
    [10] 王国周,瞿履谦主编.钢结构原理与设计.清华大学出版社,1998
    [11] 李和华.钢结构连接节点设计手册.北京:中国建筑工业出版社,1997
    [12] 严正庭,严立.简明钢结构设计手册.北京:中国建筑工业出版社,1996
    [13] G. Ballio, F. M. Mazzolani著,冶金部建筑研究总院钢结构研究室译.钢结构理论与设计,1985
    [14] 钢结构设计规范(GBJl7-88).北京:中国建筑工业出版社,1989
    [15] 冷弯薄壁型钢结构技术规范(GBJl8-87).北京:中国建筑工业出版社,1987
    [16] 建筑结构荷载规范(GBJ9-87).北京:中国建筑工业出版社,1987
    [17] 张向庭.结构风压与风振计算.上海:同济大学出版社,1985
    [18] 王之宏.风荷载的模拟研究.建筑结构学报,1994.2:23~29
    [19] 南俊,马人乐.钢塔“埃菲尔效应”的研究.建筑技术开发,2001.2:20~26
    [20] AISC. Manual of Steel Construction Allowable Stress Design. Nine Edition, 1991
    [21] AISC. Manual of Steel Construction Load & Resigance Factor Design. Second Edition, 1994
    [22] 郑金国,李荣哲.台湾与大陆微波塔设计比较.特种结构,2001.12:40~45
    [23] 马星,董军,邓洪洲.中美两国规范在钢塔设计中的比较.工业建筑,1998.12:
    
    33-38
    [24] Uniform Building Code(UBC1994). international Conference of Building Officials. Whittier, Calif, 1994
    [25] Zhang X T. The current Chinese code on wind loading and comparative study of wind loading codes, 7ThICWE, 1987:333~339
    [26] 肖炽,马少华,王伟成,空间结构设计与施工.南京:东南大学出版社,1993.3
    [27] 周竞欧,朱伯钦,许哲明.结构力学.上海:同济大学,2001.6
    [28] 沈祖炎,陈杨骥.网架与网壳.上海:同济大学,1997.5
    [29] 龚铭,陈英时等.钢结构设计过程中计算机技术的应用.’98中国建 筑钢结构工程暨学术会议文集,1998:221~225
    [30] 赵宪忠,陈以一,谢步瀛.轻型门式刚架设计软件DELSF的开发.’98中国建筑钢结构工程暨学术会议文集,1998:199~204
    [31] 何关培,范染炬.欧洲钢结构CAE/CAD/CIM/一体化SCIA.’98中国建筑钢结构工程暨学术会议文集,1998:216~221
    [32] Frame Works Plus Overview. INTERGRAPH, 1995
    [33] 空间钢结构系统CAD软件 3D3S v5.0使用手册.上海:同济大学,2001.7
    [34] 空间钢结构系统CAD软件 3D3S v4.0编程原理.上海:同济大学,2001
    [35] 赵超燮.结构矩阵分析原理.人民教育出版社,1983.2
    [36] J. J. Connon. Analysis of structural member systems. Roanld Press, 1976
    [37] 沈养中,李桐栋.工程结构有限元计算,科学出版社,2001.8
    [38] 龙驭球,有限元概论(第二版),北京:高等教育出版社,1991
    [39] 匡文起,张玉良,辛克贵.结构矩阵分析与程序设计.北京:高等教育出版社,1991
    [40] 王肇民,宗听聪,宣国梅等.钢结构设计原理.上海:同济大学出版社,2002.2
    [41] 沈祖炎.高层、轻型、高耸钢结构的理论与工程技术进展.上海:同济大学出版社,1997
    [42] 陈希哲.土力学地基基础(第三版).北京:清华大学出版社,1998.7
    [43] 华南理工大学,东南大学,浙江大学,湖南大学.地基及基础.北京:中国建筑工业出版社,2002.7
    [44] 邓庆阳.土力学与地基基础.科学出版社,2002.1
    [45] 建筑地基基础设计规范(GBJ7-89).北京:中国建筑工业出版社,1989
    [46] 林天健,熊厚金,王利群.桩基础设计指南.北京:中国建筑工业出版社,
    
    1995.5
    [47] 高大针.桩基础的设计方法与施工技术.北京:机械工业版社,1999
    [48] 建筑桩基技术规范(JGJ94-94).北京:中国计划出版社,1995
    [49] Jamesin. R. Ahart, Computer-Aided Building-Design System(CABDS), Journal of Computing in Civil Engineering, Vol. 11 (No. 1), Apr. 1997:4~7
    [50] John P. Meniti, Using Computers Effectively in Today m. Us Civil Engineering Office, Journal of Computing in Civil Engineering, Vol.10(No.4), Oct. 1996:261~262
    [51] Frame Works Plus Overview, INTERGRAPH, 1995
    [52] Raj P. Gupta and Subhash C. Goel. Dynamic analysis of the staggered truss framing system. Journal of Structural Division, 1972 (7): 1475~1491
    [53] Robert D. Hanson and Glen V. Berg. A seismic design of staggered truss buildings. Journal of Structural Division, 1974 (1): 175~193
    [54] Robert J. Hansen, William J. LeMessurier, Peter J. Pahl and Robert J. Pelletier. New steel framing system promises major savings in high-rise apartments. Architectural Record, June 1966:191~196
    [55] Harold P. Bakke, Lawrence A. Kloiber and Albert C. Nuhn. Staggered truss building systems. Civil Engineering, ASCE, Nov. 1969: 56~59.
    [56] M. P. Cohen. Design solution utilizing the staggered steel truss system. Engineering Journal, ASCE, March 1986:97~106
    [57] 王传志,腾智明.钢筋混凝土结构.北京:中国建筑工业出版社,1985
    [58] 中国船舶工业总公司第九设计研究院.弹性地基梁及弹性板的计算.北京:国防工业出版社,1983
    [59] J. B. Scalzi. The staggered truss system structural consideration. Engineering Journal, ASCE, Oct. 1971:33~42
    [60] R. E. Leffler. Calculation of wind drift in staggered-truss buildings. Engineering Journal, ASCE, Jan. 1983:1~28
    [61] LRFD Specification for Steel Hollow Structural Sections (2000), AISC, Chicago