外部驱动弯张换能器的CAD设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发射换能器设计的发展主要有三方面的推动力:对水声传播的广泛研究确立了低频应用于长距离探测的优势,新的驱动材料和结构材料的发展使得换能器在性能方面得到提高,计算机技术的应用。自从八十年代早期,低频大功率发射换能器已成为声纳应用的首选目标,其中,弯张换能器是应用得最普遍、最理想的低频、大功率换能器。但由于弯张换能器的最大的缺点是设计比较复杂,阻碍了弯张换能器的发展。近些年随着计算机技术的发展,有限元应用于弯张换能器设计已成为趋势。本文采用有限元软件ANSYS设计了外部驱动的弯张换能器。
     本文在回顾近些年换能器技术发展状况的基础上,阐述了设计低频、大功率换能器的趋势和问题,并给出了解决方法。推导了使用有限元分析压电体和声学流体的基本理论公式。随后对有限元分析软件ANSYS及其应用于换能器设计进行了简介。在论文的设计部分,对外部驱动的弯张换能器的频率特性、辐射特性及阻抗特性进行了详细的计算,对结构尺寸进行了设计优化。指出了阻抗设计是外部驱动换能器的主要问题。
     根据优化设计的结果,进行了静态应力分析和动态应力分析,确保了后续装配过程的安全性。通过ANSYS中的后处理功能,提取了所设计的换能器在空气中和水中的电声特性。
     基于以上工作,我们制作了外部驱动弯张换能器的实验样机,对实验样机的电声特性进行了测量,并与计算结果进行了对比。最后对论文遗留的问题和今后的工作方向给予了总结和归纳。
Development in the field of projector design is spurred on mainly by three motivating forces: the extensive research in underwater propagation establishes the advantages of increasing lower frequencies for long range detection, the advent of new active and structural materials leads to substantial improvements in transducer performance , applications of the computer technology. The low-frequency and high-power projector have became the primary candidate of sonar system application since the early 1980s.Among them, the flextensional transducers are the low-frequency and high-power projector applied the most widely and the most ideally. But the biggest disadvantage of flextensional transducer is the complicated design, has obstructed the development of flextensional transducer. Recent years, accompaning with the development of computer technology it has a trend which using the finite element method(FEM) to design transducers. This paper presents the design of outboard-driven flextensional transducer using FEM
    software ANSYS.
    This paper discussed the trends and problems in low-frequency and high-power transducers design and gave out the solutions based on review the development status in recent years. We deduced the basic theoretical formula for analyse piezoelectrics and acoustic fluid using FEM. Subsequently, we presented the brief introduction of finite element analysis software ANSYS and the applied method of designing transducers.
    In the part of thesis's design, we calculated the frequency characteristics,radiation characeristics and resistance characteristics of outboard-driven flextensional transducer, and optimized the size of structure. We pointed out that the resistance was the chief problem encountered in outboard-driven flextional transducer design.
    
    
    According to the results of optimizing design,we carried out the static stress analysis and the dynamic stress analysis, and insured the safety of the later assemble processes. We calculated the electro-acoustical characteristics of designed transducer using the postprocess functions of ANSYS.
    According to the above work, we manufactured and measured the real outboard-driven flextensional transducer ,then comparing with calculating result. Finally ,we summarized the problems which have leaved behind and the work directions in the future.
引文
[1] B. Tocquet. Introductory Lecture. Power Sonic and Ultrasonic Transducers Design. Proceedings of the International Workshop, France, 1997:1-2P
    [2] R.W. Timme, etc. Transducer Needs for Low-Frequency Sonar. Power Transducers for Sonic and Ultrasonic. Proceedings of the International Workshop, France, 1990:75-76P
    [3] D. Boucher. Trends and Problems in Low Frequency Sonar Projectors Design. Power Sonic and Ultrasonic Transducers Design. Proceedings of the International Workshop, France, 1997:100-120P
    [4] Jean-Noěl Decarpigny, Bernard Hamonic. The Design of Low-Frequency Underwater Acoustic Projectors:Present Status and Future Trends. IEEE, 16(1),1991:111-113P
    [5] P. Dufourcq, J. Adda, M. Letiche, and E. Sernit. Transducers for Great Depths. Power Sonic and Ultrasonic Transducers Design. Proceedings of the International Workshop, France, 1990:3-13P
    [6] 谢朝矩,姚国华.低频宽带大功率溢流式镶拼圆管换能器.应用声学,1995,15卷1期:30-34页
    [7] 周福洪,郑士杰,姚青山.新型换能器的发展概况及应用前景.应用声学,1989,9卷6期:1-2页
    [8] 栾桂冬,张金铎,王仁乾.压电换能器和换能器阵(上册).北京大学出版社,1990
    [9] 张福学.现代压电学(中册).科学出版社,2002
    [10] 朱厚卿.超磁致伸缩材料国际会议情况介绍.应用声学,1998,16卷3期:48页
    
    
    [11] 朱厚卿.稀土超磁致伸缩材料的应用.应用声学,1998,17卷5期:3-10页
    [12] R.Y. Ting. Recent Developments in Transduction Materials for Future Sonar Transducers. Transducers for Sonics and Ultrasonics. Proceedings of the Third International Workshop, U.S.A.,1992: 3-16P
    [13] 莫喜平.新型弯张换能器的研究与设计.哈尔滨工程大学博士学位论文.1998:11-13页
    [14] 栾桂冬,张金铎,王仁乾.压电换能器和换能器阵(下册).北京大学出版社,1990:1-83页
    [15] 商德江.复杂弹性壳体水下结构振动和声场特性研究.哈尔滨工程大学博士学位论文.2000:5-10页
    [16] 杜功焕等著.声学基础.第二版.南京大学出版社,2001:310-316页
    [17] Oingshan Yao. The design of broadband underwater acoustic transducer for low-middle frequency regimes. Ph.D. Dissertation, Technical University of Denmark. 1997:21-28P
    [18] D. Boucher. New Solutions for Low Frequency Sonar Projectors. Transducers for Sonics and Ultrasonics. Proceedings of the Third International Workshop, U.S.A.,1992: 19-20P
    [19] Kenneth D. Rolt. History of the flextensional electroacoustic transducer. J.A.S.A. 1990,87(3):1340-1347P
    [20] W.J. Toulis. Flexural-extensional Electromechanical Transducers. U.S. Patent 3,277,433,1966
    [21] F.R. Abbott. Broadband Electroacoustic Transducer. U.S. Patent 2,895,062,1959
    [22] H.C. Merchant. Underwater Transducer Aparatus. U.S. Patent 3,258,738,1966
    [23] Gerald A. Brigham. Analysis of the class-Ⅳ flextensional
    
    transducer by use of wave mechanics. J. A. S. A., 1974, 56(1):31-39P
    [24] J.C. Debus. Analysis of a class Ⅳ flextensional transducer using piece-part equivalent circuit models. Transducer for sonics and ultrasonics. 1992:181-197P
    [25] 鲍小琪等.凹型压电弯张换能器的有限元分析.声学学报,1982,第7卷第3期:159-164页
    [26] 贺西平等.低频大功率稀土磁致伸缩弯张换能器的有限元设计理论及实验研究:Ⅰ.理论部分.声学学报,2000,第25卷第6期:521-527页
    [27] 王智元等.纳米塑料的声学特性.声学技术2002年增刊,2002:471-472页
    [28] G. Bromfield. Class Ⅳ Flextensional Transducers. Power Transducers for Sonic and Ultrasonic. Proceedings of the International Workshop, France, 1990:48-58P
    [29] E.F. Rynne. Innovative Approaches for Generating High Power, Low Frequency Sound. Transducers for Sonic and Ultrasonic. Proceedings of the International Workshop, U.S.A.,1992: 38-48P
    [30] 莫喜平.新型弯张换能器的研究与设计.哈尔滨工程大学博士学位论文.1998
    [31] R.E. NEWNHAM, etc. A New Type of Flextensional Transducer. Transducers for Sonic and Ultrasonic. Proceedings of the International Workshop, U.S.A.,1992:130-141P
    [32] Aydin Dogan, etc. Composite Piezoelectric Transducer with Truncated Conical Endcaps "Cymbal".IEEE, 1997, VOL. 44, NO. 3: 597-604P
    [33] James F. Tressler, etc. Capped ceramic under- water sound projector:The "cymbal" transducer. J.A.S.A.,1999, Vol. 105, No. 2:591-599P
    [34] Stephen C. Butler, etc. Directional flextensional transducer.
    
    J.A.S.A.,1992, Vol. 92, No. 5:2977-2979P
    [35] ANSYS User's Manual(Rev. 5.2),Vol.Ⅳ
    [36] Porzio. OUTBOARD-DRIVEN FLEXTENSIONAL TRANSDUCER. U.S. Patent 4,894,811,1990
    [37] Qingshan Yao and Leif Bjorno. Depth restrictions and solutions for barrel stave flextensional transducers. 3rd European conference on underwater acoustics. Heraklion. 1996:1037-1042P
    [38] 蓝宇.有限元法设计Ⅳ型弯张换能器.哈尔滨工程大学硕士学位论文.2000:41-44页
    [39] 单辉祖等.材料力学(下册).修订版.国防工艺出版社,1990:1-3页
    [40] 王荣津等编著.水声材料手册.北京:科学出版社,1983:86页
    [41] 郑士杰等编著.水声计量测试技术.哈尔滨工程大学出版社.1995:177-186页