苹果果实cDNA文库的构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验以新红星苹果为研究材料,采用CTAB法成功的从苹果果实里提取了高质量的RNA。利用MMLV反转录酶把总RNA中的mRNA反转录成cDNA,用特异引物进行LD—PCR扩增合成双链cDNA。然后用CHROMA SPIN—400Column对cDNA进行分级分离,去除小于500bp的cDNA片段。用带有粘性末端双链cDNA与λ Trip Ⅰ Ex2载体连接,利用λ噬菌体包装蛋白对合成的双链cDNA进行体外包装。包装产物侵染E.coli XL-Blue后构建cDNA文库,最后进行文库的扩增。该cDNA文库的滴度为1.191×10~6,文库的克隆数为1.112×10~6,扩增后滴度为1.532×10~10,插入片段平均大小在1 kb左右,蓝白斑筛选证实其重组率大于95%。同时,由于反转录过程中采用附加序列的方法使全长mRNA得到反转录,所以得到的cDNA是完整的,完全符合cDNA文库的要求。本实验成功构建了新红星苹果果实cDNA文库。
A high quality cDNA library of M. Red stark ing fruit has been constructed. The total RNA of apple fruits has been extracted by using CTAB method. The single strand cDNA was synthesized from mRNA with MMLV reverse transcriptase, then double strand cDNA was synthesized by using PCR. Double strand cDNA size fractionation was completed by CHROMA SPIN-400 column, so the low molecular weight cDNA fragments shorter than 500 bp could be removed out. cDNA was packaged using the A. phage packaging system after being ligated to the blunted A. Trip I Ex2. The cDNA library has been constructed and amplified through transducting E.coli XL1-Blue. The constructed cDNA library has the liter of 1. 191+106 and the clone number is 1. 112 +106. While the average insert sizes of the library are 1 kb with the recombination efficiency more than 95%, and the amplified titer of the library is 1.532+1010. Therefore, a cDNA library of apple fruit has been successfully constructed.
引文
1.B.R格利克,J.E汤普森主编,植物分子生物学及生物技术的实用方法,1999,重庆:重庆出版社
    2.陈武,陈珈,玉米根尖质膜的受钙激活的蛋白激酶的特性,植物学报,1999,41:166—170.
    3.陈昆松,猕猴桃果实成熟过程脂氧合酶的生理与分子特性研究1998,浙江农业大学博士论文
    4.J.萨姆布鲁克等著,分子克隆实验指南。金冬雁,黎孟枫等译候云德等核,1993,北京:科学出版社
    5.李宝健,植物生物技术原理与方法,1990,长沙、湖南科学技术出版社
    6.梁小娥,1999,中国农业大学博士论文
    7.刘彦华,1999苹果铁高效基因型生物技术的研究一根总RNA提取方法的比较及mRNA的纯化,中国农业大学硕士论文
    8.卢圣栋主编,现代分子生物学实验技术,1993,北京:高等教育出版社
    9.孙大业,郭艳林,马力耕编著,细胞信号转导,1998,北京:科学出版社
    10.王关林,方宏筠主编,植物基因工程原理与技术,1998,北京:科学出版社
    11.吴乃虎编著,基因工程原理,1998,北京:科学出版社
    12.解字典,2001,中国农业大学硕士论文
    13.徐杰,李明启,异硫氢酸胍一酚一氯仿一步法提取RNA时某些操作技术的改进。植物生理学通讯。1996,32[3]:206-208,
    14.张承才,彭玲,蛋白激酶在植物生长及发育中的作用,见:徐智宏,刘春明。植物发育的分子机理,1998,北京:科学出版社
    15.朱玉贤、李毅编著,现代分子生物学,1997,北京:高等教育出版社
    16. Alex LA, Simon ML, Protein histidine kinases and signal transduction in prokayotes and eukaryotes. Trend in Genet., 1994, 10:133-138
    17. Am Callahan, Peter Morgens and Eve Walton. Isoolatvon and in vitro translation of RNAs from develpvng peach friut. Aortscvence, 1989 24(2):356-358
    18. Baker S S, Rugh C L and Kamalay J C RNA and DNA isolation from recalccitrant Plant tissues.Biotechnipue, 1990, 9:268-272
    19. Battrey N H, Venis M A. Calcium-dependent protein kinase from apple fruit membranes is calmodulin-independent but has calmodulin-like properities. Planta, 1988a. 176:91—97.
    20. Bennett J. Protein phosphorylation in green plant chloroplasts. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 281-311.
    21. Bethke PC, Jones RL Reversible potein photosphory regulates the activity of the slow-vacuolar ion channel. Plant Journal, 1997, 11:1227-1235.
    22. Biermann B, Johnson EC, Feldman L, Chaacterization and distribution of a maize cDNA encoding
    
    a peptide similar to the catalytic of second messenger dependent protein kinases. Plant Physiol., 1990,94:1609-1615
    23. Borge L, Ligterink W, Heberle-Bors E, Hirt H. Mechanosensors in plants. Nature, 1996, 383:489-490.
    24. Bourret RB, Borkovich KA, Simonet MI, Signal transduction pathways involving protein phosphylation in prokaryotes. Annu. Rev. Chem., 1991, 60: 401-441.
    25. Breviario D, Morello L, Gians S, Molecular cloning of two novel rice cDNA sequences encoding putative calcium-dependent protein kinases. Plant Mol. Biol., 1995, 27: 953-967.
    26. Bush DS, Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, 46:95-122.
    27. Carrera AC, Alexaandrov K, Roberts TM, The conserved lysine residue of the catalytic domain of protein kinases in actively involved in the phosphotransfer reaction and not required for anchoring ATP. Prot. Natl. Acad. Sci. USA, 1993, 90: 442-446.
    28. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM. Arabidopsis ethylene-resonse gene ETRI:similarity of product to two-component regulators.1993, Science, 262:539-544.
    29. Chang C, Meyerowitz EM. Arabidopsis ethylene-resonse gene ETRI: similarity of product to two-component regulators.1995,Science, 362:739-744.
    30. Chasan R. Eliciting phosphorylation. Plant Cell, 1995,7:495-497.
    31. Chaudhuri S, Seal A, DasGupta M Autophosphoryation-dependent activation of a calaium-dependent protein kinase from groundnut. Plant Physiology, 1999, 120:859-866.
    32. Chirgwin J M, Przybyla A E, MacDONALD R J and Rutter W J The role of iron-deficiency stress response in stimulating heavy-metal transport in plants. Plant physiol., 1998, 116:1063-1072
    33. Conley TR, SharpRE, Walker deficit rapidly stimulates the activity of a protein kinase in the elongation zone of the maize primary root. Plant Physiol, 1997, 113: 219-226.
    34. Davis JR, Polya GM, Purification and properties of a high specific activity protein kinase from wheat germ. Plant Physiol, 1983, 71:489-495.
    35. Douglas P, Moorhead G, Hong Y, Morice N, Mackintosh C, Purification of a nitraaare reductase kinase from Spinacia oleracea leaves, and its identification as a calmodulin-domain protein kinase. Planta, 1998,206: 435-442.
    36. Duerr B, Gawienowask M, MsERKI: a mitgoen-activited protein kinase from flowering plant.Plant Cell, 1993, 5: 87-96.
    37. Estruch UJ, Kadwell S, Merlin E, Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc. Natl. Acad. Sci. USA 1994, 91:8837-8841.
    38. Estruch UJ, Kadwell S, Merlin E, Crossland L, Clone and characterization of a maize pollen-specific calcium-dependant protein kinase. Proc. Natl. Acad. Sci. USA, 1994, 91: 8837-8841.
    39. Feiler HS, Jacobs TW, Cell division in higher Plants: a cdc2 gene, its 34-kDa product, and histidine HI kinase activity in pea. Prot. Natl. Acad. Sci. USA, 1990, 87:5397-5401.
    
    
    40. Fields S. The future is function. Nature, 1997, 15:325-327
    41. Frandsen Ct Muller-Uti F, Mundy J. Novel plant Ca~(2+)-binding protein expressed in response to abscisic acid and osmotic stress.J Biol Chem, 1996, 271(1):343-348.
    42. Frylinck L, Dubery IA. Protein kinase activities in ripening mango, Mangifera indica L., fruit tissue. Purification and characterization of a calcium-stimulated casein kinase-I. Biochem Biophys Acta, 1998c, 1382: 65-79.
    43. Ganguly S, Singh M, Purification and characterization of a protein phosphatase from winged bean. Phytochemistry, 1999, 52:239-246.
    44. Gilory S, Bethke PC, Jones RL. Calcium homeostasis in plants.J Cell Sci, 1994, 106: 453-462.
    45. Giovannoni JJ, Kannan P, Lee S, Genetic approaches to manipulation of fruit development and quality in tomato. In: Cockshull KE, Gray D, Seymour GB, Thomas B. Genetic and environmental manipulation of horticultural crops. 1998, 1-15.
    46. Gleen GM, Reddy ASN, Poovaiah BW, Effect of calcium on cell structure, protein phosphorylation and protein profile in senescing apples. Plant Cell Physiol, 1988, 29(4):565-572/
    47. Goring DR, Rothstein SJ, The S-locus receptor kinase gene in aseif-incompatible Brassica line encoded a functional serine/threonin kinase. Plant Cell, 1992, 4:1273-1281.
    48. Hanks SK, Quinn AM, Hunter T, The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science, 1988, 241:42-52.
    49. Hanks SK, Quinn AM, Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Meth. Enzymol., 1991, 200: 38-62.
    50. Hardie DG Plant protein serine/threonine kinase: classification and functions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50: 97-131.
    51. Harmon AC, Gribskov M., harper JE, DPKs-a kinase for every c Trends. Plant Sci., 2000,5:154-159.
    52. Harmon AC, Putnam-Evans C, Cormier MJ A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiology 1987, 83: 830-837.
    53. Harper JF, Binder BM, Sussman MR, Calicium and lipid regulation of an Arabiodopsis protein kinase expressed in Escherichia coil. Biochemistry, 1993, 32:3282-3290
    54. Harper JF, Huang JF, Lloyd SJ, Genetic identification of an autoinhibitot in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry, 1994, 33; 7267-7277
    55. Hepler PK, Wayne RO. Calcium and plant development. Annu Rev Plant Physiol, 1985, 36:397-439.
    56. Hetherington A, Trewavas A, Calcium-dependent protein kinase in pea shoot membranes. FEBS Lett, 1982, 145:67-71.
    57. Hong SW, Jon JH, Kwak JM, Nam HG, Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol., 1997, 113;1203-1212
    
    
    58. Hrabak EM, Dickmann LJ, Satterlee JS, Sussman MR, Characteriation of eight new members of the calmodulin-like domain protein kinasw gene family from Arabidopsis thliana. Plant Mol Biol.,1996, 31:405-412.
    59. Hunter T, Karin M, The regulation of transcription by phosphorylation. Cell, 1992, 70:375-387.
    60. Hurley T, Dean M, The regulation of transcription by phosphorylation. Cell, 1990, 70:375-387.
    61. Johnson DR, Bhatnagar RS, Kondo T, Masson P, Sedbrook J, Haley A, Trewaras A, Circadian oscillations of the "polypyrimidine tract" mTNA family. Proc. Natl, Acad. Sci. USA,1992,91:705-716.
    62. Jonak C, Heberle-Bors E, Hirt H, MAP kinase: universal multi-purpose signaling tools, Plant Mol Biol, 1994, 24:407-416.
    63. Kakimoto T, CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science, 1996, 274: 982-985.
    64. Karibe H, Komatsu S, Hirano H. A calcium and phospholipid dependent protein kinase from rice leaves. Physiol Plant, 1995, 95:127-133.
    65. Kawasaki T, Hayashida N, Baba T, Shinozaki K, Shimada H, The gene encoding a calcium-depenndent protein kinase located near the shel gene encoding starch branching enzymal is specifically expressed in developing rice seeds. Gene, 1993, 129:183-189.
    66. Kieber J, Rotenberg M, Roman G, Feldmanna KA, Ecker JR. CTR1, a negative regulator of the ethylene pathway in Arabidopsis, encodes a member of the raf family of protein kinase. Cell, 1993, 72:427-441.
    67. Knetsch MLM, Wang M, Heimovaaradij-Kstra S, Abscisic acid induced mitogen- activation in barely aleurone protoplasts. Plant Cell, 1996, 8:1061-1067.
    68. Lawton MA, Yamamoto RT, Hanks SK, Christopher L, Molecular cloning of plant transcript encoding protein kinase homology. Proc. Natl. Acad. Sci. USA, 1989 86:3140-3144.
    69. Lee SJ, Paterson HF, Marshall CJ, Requirement forRas in Raf activation is overcome by targeting Rafto the plasma membrane. Nature, 1994, 369:411-414.
    70. Li H, Dauwalder m, Roux SJ, Partial purification and characterization of a Ca~(2+)-dependent protein kinase from pea nuclei. Plant Physiology, 1991, 96:720-727.
    71. Li J, Lee YRJ, Assmann SM, Guard cells possess a calcium-dependent prorein kinasw that phosphorylates of plants. Science, 1997, 276:2054-2057.
    72. Liang P, Pardee AB, Differential display of eudaryotic messenger RNA by means of the polymrase chain reaction.Science, 1992, 257:967-971
    73. Lino B, BaizabaI-Aguirre VM, Gonzalez de la Vara LE, The plasma-membrane H~+-ATPase from beet root is inhibited by a calcium-dependent phosphorylation.1998, Plant Physiology 116:785-795.
    74. Luda D,Yun-Fai C L and Aaron P C Suppresion subtractive hybridization:A method for generating differentially regulated of tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA, 1996, 93:6025-6030
    75. Ma H, Protein phosphorylation in plants: enzymes, substrates and regulators. TIG, 1993,
    
    9:228-230.
    76. Martinze MC, Jorgensen J, Lawton MA, Lamb CJ, Doerner PW, Spatial pattern of cdc2 expression in relation to meristem and cell proliferation during plant development. Proc. Natl. Acad Sci. USA, 1992, 89: 7360-7364.
    77. Mizoguchi T, Ichimura K, Shinozaki. Envrionmental stress response in plants: the role of mitogen-activated protein kinases. Trends Biotech, 1997, 15-19.
    78. Neuhaus G, Bowler C, Kern R, Chua N-H, Calcium/calmodulin-dependent and independent phytochrome signal transduction pathways. Cell, 1993, 73:937-952.
    79. Nikolai L, Natalya L and Micaei W Cloning the differences between two complex genomes. Science, 1993, 259:946-951
    80. Olah Z, Kiss Z. Occurrence of lipid and phorbol ester activated protein kinase in wheat cells, FEBS Lett, 1986, 195:33-37.
    81. Paliyath G, poovaiah BW, Calcium and calmodulin promoted phosphorylation of membrane proteins during senescence in apples. Plant Cell Physiol, 1985, 26(6):977-986.
    82. Pei ZM, Ward JM, Harper JF, Schroeder JI, A novel chloride channel in Vicia faba guard cell vacuples activated by the serine/threonine kinase,CDPK. EMBO J., 1996, 15: 6564-6574.
    83. Peterson LA, BrownMR, Carlisle AJ et al.. An improved method for construction of directionally cloned cDNA li-braries from microdissected cells. Cancer Res. 1998, 58:5326-5328
    84. Polys GM, Nott R, Kiucis E, Minichiello J, Inhibition of plant calcium-dependent protein kinases by basic polypeptides. Biophys. Acta, 1990, 1037:259-262.
    85. Poovaiah BW, Reddy ASN, Calcium and signal transduction in plants. Criti. Rev. Plant Sci.,1993,12: 185-211.
    86. Putnam-Evans C, Harmon AC, Cormier MJ, Purification and characterization of a novel protein kinase from soybean. Biochemistry, 1990, 29:2488-2495.
    87. Raghothama KG, Veluthambi K, Poovaiah BW, Staged-specific changes in calcium regulated protein phosphorylation in developing tomato fruits. Plant cell Physiol, 1985, 26(8):1565-1572.
    88. Raz V, Fluhr R, Ethylene signal is transduced via phosphorylation events in plants. Plant Cell,1993, 5:523-530.
    89. Ritchie S, Gilroy S, Calcium-modulated proteins: targets of intracellular calcium signal in higher plants, Annu Rev Plant Physiol Plant Mol Biol, 1992, 43:375-414.
    90. RNA from spruce tissues. Plant Mol. Biol. Reporter, 11(3):212-215
    91. Roberts DM, Harmons AC, Calcium-modulated proteins: treat of intracellular calcium signials in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1992, 43:375-414.
    92. Roeder T. Solid phase cDNA library construction, a versatile approach.Nucleic cids Res, 1998, 26:3451-3452
    93. Saha P, Singh M, Characterization of a winged bean protein kinase with calmodulin-like domain: regulation by autophosphorylation. Biochem.,J, 1995, 305: 205-210.
    94. Sano H, Youssefian S, Light and nutritional regulation of encoding a wheat protein kinase with
    
    isozyme specific antibodies. Oncogenes, 1994, 5:1775-1780.
    95. Schaller GE, Sussman MR, Phosphorylation of the plasma-membrane of oat roots by a calcium-stimulated protein kinase. Planta, 1988, 173:509-518.
    96. Scherer G, Telford J, Baldari Cand Pirrotta VIslation of cloned genes differentially expresed at early and late stages of Drosophila embryonic development. Dev. Biol., 1981, 86:438-447
    97. Sheen J, Ca~(2+)-dependent protein kinase and stress signal transduction in plants. Planta, 1996, 274:1900-1902.
    98. Sprang SR, Acharya KR, Goldsmith EJ, Stuart DJ, Varvili K, Madsen NB, Johnson LN, Structural changes in glycogen phosphorylase induced by phosphorylation. Nature, 1988, 336: 215-221.
    99. Stock JB, Stock AM, Mottonen JM, Signnal transduction in bacteria. Nature, 1990, 344:395-400.
    100. Stone JM, Walker JC, Plant protein kinase families and signal transducion. Plant Physiol, 1995,108:451-457.
    101. Su X and Gibor A A method for RNA isolation from marine macro-algae. Anal. Biochem., 1998, 174:650-657
    102. Suen L, Choi JH, Isolation and sequence analysis of a cDNA clone from carrot calcium-dependent protein kinase: homology to calcium dependent protein kinases and to calmodulin.Plant Mol. Biol., 1991,17:581-590.
    103. Tahtiharju S, Sangwan V, Monroy AF, Dhindsa RS, Borg M, The induction of as genes in cold-acclimating Arabiopsis thaliana. Evidence of a role for calcium. Planta, 1997, 203:442-447.
    104. Tena G, Renaudin J-P, Cytosolic acidification but not auxin at physiological concentration is an activator of MAP kinase in tobacco cells, Plant J, 1998,16:173-182.
    105. Thompson W F, Everett M, Polans NO, Jorgensen R A and Palmer J D Phytochome control of RNA levels in developing pea and mung-bean leaves. Planta, 1983,158:487-500
    106. Tonks NK, Protein phosphatases: key players in the regulation cell function. Curr. Opinion Cell Biol., 1990, 2: 1114-1124.
    107. Trewavas AJ, Malho R, Signal transduction: the origin of the phenotype. Plant Cell, 1997, 9: 1181-1195.
    108. Trewavas AJ, Malho R. Signal perception and transduction: the origin of the phenotype. Plant Cell, 1997, 9:1181-1195.
    109. Urao T, Kateshi T, Mizoguchi T, Yamaguchi-Shinozaki K, Two genes activates a 46-kilodalton protein kinase in plants. Natl. Acad. Sci. USA, 1995, 92: 8660-8664.
    110. Usam S, Banno H,Ito Y, Nishihana R, Machida Y, Cutting activates a 46-kilodalton protein kinase in plants. PNAS USA, 1995, 92: 8660-8664.
    111. Verhey SD, Lomax TL, Signal transduction in vascular plants. J Plant Growth Regul, 1993, 12:179-195.
    112. Walker JC, Zhang R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica. Nature, 1990, 345:743-746.
    113. Walker JC. Structure and function of the receptor-like protein kinases of higher plants. Plant Mol
    
    Physiol, 1994, 26.. 1599-1609.
    114. Wang XQ, Wu WH, Zhang JS, Evidences for regulation of the inward K~+-channels by CDPK in Vicia faba guard cells. Acta Botanica Sinica, 1998, 40:1001-1009.
    115. Watillon B, Kettmann R, Boxus P, Burny A, A calaium-dependent phosphorylation of symbiosome membrane proteins from nitrogen fixing soybean nodules, Plant Physiol, 1991,95:222-227.
    116. Weaver CD, Toberts DM, Determination of the site of photophorylation of Nodulin-26 by the calcidum-dependent protein kinase from soybean nodules. Biochemistry, 1992, 31:8954-8959.
    117. Wilson C, Eller N, Gartner A, Vicente O, Heberle-Bors E, Evidences for the activation of a MAP kinase upon phosphate-induces cell cycle entry in tobacco pollen. Plant Cell, 1997, 9:2093-2100.
    118. Wong BY, Chen H, Chung SW et al.. High-efficiency identification of genes by functional analysis from a retroviral cDNA expreion libraries. J Virol, 1994, 68:5523-5531
    119. Yahalom A, Lando R, Katz A, Epel BL, A calcium-dependent protein kinase is associated with maize mesocotyl plasmodesmata. J. Plant Physiol. 153: 354-362.
    120. Yang Z. Signal transducing proteins in plants: an overview. In: Verma D PS. Signal transduction in plant growth and development. Austria: Springer-Verlag/Wien. 1996, 1-38.
    121. Zannettino ACW, Rayner JR, Ashman LK et al.. A powerful new technique fo isolating genes encoding cell surface antigens using retroviral expression cloning. J Immunol. 1996, 156:611-620
    122. Zhang S, Klessig DF. Salicylic acid activates 48-kD MAP kinase in tobacco. Plant Cell, 1997, 9: 809-824.
    123. Zhao Y, Pokutta S, Maurer P, Lindt M, Calcium-binding properties of a calcium dependent protein kinase from Plasmodium falciparum and the signficance of individual calcium-binding sites for kinase activation. Biochemistry, 1994, 33:3714-3721.