丛枝菌根真菌在不同土壤环境因子下的适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验条件下,不同基质相对含水率处理、不同土壤综合肥力处理和不同基质pH处理对于4个AMF菌株的适应性都有很大的影响。
     水分试验:采用沙培基质试验,以大豆(Glycine max(L.) Merr.)为宿主植物研究了4个AMF菌株(Glomus. versiforme 1、Glomus.mosseae 93、Glomus.diaphanum、和Glomus.versiforme2)在三个基质相对含水率处理(25%、50%、80%)下的适应性。结果表明:1)G.m菌株在所有水分处理中都保持较高的侵染率和菌丝量,而且初期侵染快,后期仍较稳定,菌丝量则后期较初期增高,2)G.d菌株在初期较高含水率下生长较好,而后期,在3个水分处理下,较高的根系侵染率并未获得较高的菌丝量;3)G.vl菌株在初期低含水率下较低的侵染率却获得了较高的菌丝量,后期的侵染率和菌丝量则仅次于G.m菌株;4)G.vl、G.v2、G.d菌株侵染率和菌丝量都是后期比初期增高;5)初期和后期接种4个菌株都能不同程度地提高大豆植株地上部吸磷量和水分利用效率,从而增加大豆的地上部干重;6)接种4个AMF菌株可以降低大豆植株的叶水势,降低自然饱和亏,提高叶片相对含水量,降低叶片脯氨酸含量从而减轻干旱胁迫程度,降低大豆植株的萎蔫系数,从而提高大豆植株的耐旱性;7)G.m菌株在初期和后期不同水分处理下对大豆植株所起的综合效果较其他3个菌株为好。
     肥力试验:采用土培试验,以青椒(Capsicum annum.)为宿主植物研究了4个菌株在4个土壤综合肥力(T1、T2、T3,T4)下的适应性。结果表明:G.m菌株的侵染率随着肥力的增高而呈下降趋势,但下降趋势小,且在4个菌株中为高侵染水平;菌丝量在T2土壤速效磷含量为19.8mg/kg时达到最高。G.d菌株两次取样时,侵染率、菌丝量随着肥力的增高而下降,下降幅度大于G.m菌株,在T1土壤速效磷含量为4.73mg/kg时其侵染率和菌丝量为4个菌株中最高。G.v的两个菌株,侵染率、菌丝量都较低,G.v1菌株在T2出现侵染率、菌丝量的高峰;G.v2在T3出现侵染高峰,菌丝量则随着肥力的增高而下降。G.m、G.d菌株对肥力适应范围广,但只有G.m菌株提高青椒地上部干重、氮磷钾吸收量的效果最好。
    
     pH试验:采用纯砂培基质试验,以玉米‘澡刁。”1夕为宿主植物研究了4株AM
    真菌(叹d、叹刃、叹从和叹沼)在三个基质pH(pH6.o、pH7.5、pHS.5)下的适应性。
    侵染率结果表明:G.m和G.d菌株两次取样中,在3个pH处理下,侵染率随着pH的升
    高而增加,且大于G.v的两个菌株;G.,1在两次取样中随pH的升高而下降;G.vZ则在
    初期随着pH的升高而升高,后期却此相反:菌丝量结果表明:G.m菌株在2次取样中,
    菌丝量均大于其它3个菌株,且随着pH升高而增加;G.d菌株在初期取样中菌丝量受pH
    影响不大,后期则随着pH的升高而略有升高;G.,l菌株初期表现G.d相似,后期则
    随pH升高而下降;G.vZ菌株两次取样中均是在pH7.5时最高,pH高或低都不利于菌丝
    的生长和发育。不同菌株在不同的pH下菌根效果不同:各pH处理接种4个菌株,能够
    提高玉米的地上部干重,降低地一F部干重,提高玉米地上部吸磷量,促进玉米地上部的
    生长发育。在这个过程中,G.,1菌株在pH6.0和pH7.5下在4个菌株处理中效果最佳,
    其地上部干重较对照分别增加了14.81%和24.25%,G.vZ菌株在pH6.0时效果最好,G、脚
    和Gd菌株则在pHS.5时效果显著,较对照处理地上部干重分别增加了18.99%和16.67%。
     侵染率在一定程度上反映了根外菌丝的生长状况,但有时菌株侵染率高但根外菌丝
    量不一定大。可能由于根内外菌丝的生长受到不同外界环境条件的影响,而各个菌株在
    环境因子改变时的适应程度不同,造成根内外菌丝生长速度不一致,此外还不同真菌
    的侵染特点等有关。
     侵染率和菌丝量等真菌生长状况有时和菌根效果一致,有时并不一致,这不仅受到
    宿主,肥力条件、取样时期等各种环境因素的的影响,还可能菌根活性、真菌根内外
    菌丝比例和根外菌丝在根际分布的影响有一定关系。
     综合比较4个菌株对基质水分、肥力及pH的反应, G.m菌株的生态适应性幅度最
    大,接种后菌根效应也最好,是较理想的生产用菌株。
The adaptability of four isolates of fungi to different pH, relative water contents of substrates, and different soil comprehensive fertility were studied.
    1.In the subsrtate humidity experiment, ,the host plant soybean(GJycine max (L. ) Merr.) inoculated with four AM fungi isolates (G.versiformel , G .versiforme2, G.mosseae, G.diaphanum) respectively was grown in sand at three relative water content (25% , 50% , 80%). The following results has been achieved: l)The root colonization and quantity of external hyphae that inoculated with isolate G.m in all three humidity treatments were higher than other isolates. Isolate G.m infacted root faster and was more stable in latter stage. The quantity of external hyphae was increased at latter stage 2) Isolate G.d grew better in the higher water content in former stage, while in latter stage,under three water treatments, the erexternal hyphae was not in high quantity although root colonization was high. 3) Isolates G.vl gained more external hyphae under lower water treatment in former stage with the lower root colonization, In latter stage, the root colonization and amount of external hyphae by Isolates G.vl were lower
    than that of G.m ; 4) Root colonization and quantity of external hyphae by G.vl, G.v2, G.d in latter stage were higher than in former stage. 5) In former and latter stages, all four isolates enhanced the phosphorus absorbtion, the water using efficient, and shoot weight of soybean. 6) Inoculating four AMF isolates could decrease soybean leaf water potential , leaf nature saturated wane, the proline contend wither coeffient,and enhance relative water content,and then alleviated the drought hardiness of soybean plant. 2. In the substrate fertility experiment, green pepper(Capsicum annum) inoculated with four AMF isolates (G.vl , G.v2, G.m , G.d) respectively was grown in soil with four comprehensive fertility treatments (Tl ., T2, T3, T4). The results are as follows:The root colonization by isolate G.m slightly decreased with the raising of fertility, but still was the highest among four isolates. The quantity of external hyphae was the highest under T2 treatment(soil available phosphorus 19.8mg/kg). Unlike is
    olate G.m, the root coloniztion and
    
    
    
    quantity of external hyphae of G.d decreased more with the raising of fertility. Under Tl treatment (soil available phosphorus 4.73mg/kg),the root coloniztion and quantity of external hyphae were the highest among four isolates. The root colonization and quantity of external hyphae of two isolates of G.v were lower than other two isolates. The peak of root coloniztion and quantity of external hyphae by G.vl were under T2 treatment; and the peak of root coloniztion by G.v2 was under T3 while the quantity of external hyphae decreased with the raising of fertility. Isolates.G.m and G.d had much wider fertility range ,but only G.m had best effection in enhancing top weitht,nitrogen, phosphorus , potassium(K) contents of sweet pepper.
    3. In the substrate pH experiment, maize(Zea mays 1) inoculated with four AM fungi isolates respectively was grown in pure sand of three pH treatment(pH6.0, pH7.5, pH 8.5). The results indicated: The root colonization by isolates G.m and G.d increased when substrate pH raised, and higher than other two isolates under three substrate pH treatment.The root colonization by isolates G.vl decreased when substrate pH raised, The root colonization by isolate G.v2 increased with the increasing of substrate pH in former stage, but are contrary in latter stage. The quantity of external hyphae of G.m was higher than other three isolates in two sampling stages, and was increased when substrate pH increased. The quantity of external hyphae of G.d was not greatly affected by variation of substrate pH in former stage, while increased with the increasing of substrate pH in latter stage. G.vl was resemble to G.d in former state,but is contrary in latter stage. The quantity of external hyphae of G.v2 was higher under substrate pH7.5. The mycorrhizal effects under different substrate pH by four A
引文
[1].刘润进,李晓林编著.丛枝菌根及其应用[M].北京:科学出版社,2000.
    [2].李晓林,曹一平.VA菌根吸收矿质养分的机制[J].土壤,1993,25(5):274~277.
    [3].刘润进.VA菌根对湖北海棠实生苗水分状况的影响[J].莱阳农学院学报,1989,6(1):34~39.
    [4].贺学礼,李生秀.不同VA菌根真菌对玉米生长及抗旱性的影响[J].西北农业大学学报,1999,27(6):49~53.
    [5].汪洪钢,吴观以,李慧荃.VA菌根对绿豆(Phaseolus aureus)生长及水分利用的影响[J].土壤学报,1989,26(4):393~400.
    [6].林先贵,郝文英,施亚琴.VA菌根对植物耐旱、涝能力的影响[J].土壤,1992,24(3):142~145.
    [7].王幼珊,张美庆,张弛等.VA菌根真菌抗盐碱菌株的筛选[J].土壤学报.1994,第31增刊:79~83.
    [8].冯固,白灯莎,杨茂秋等.盐胁迫对VA菌根形成及接种VAM真菌对植物耐盐的效应[J].应用生态学报,1999,10(1):79~82.
    [9].唐明.VA菌根提饶植物抗盐碱和抗重金属能力的研究进展[J].土壤,1998,30(5):251~254.
    [10].冯固,李晓林,VA菌根提高植物耐盐性研究进展[J].西北农业大学学报,1999,27(3):94~100.
    [11].李树林,赵士杰.VA菌根对茄子,黄瓜,籽瓜促生防病效应的研究[J].内蒙古农牧学院学报,1996,17(1):55~58.
    [12].于汉寿,陈永萱.VA菌根对西瓜生长和枯萎病的影响[J].中国蔬菜,97(6):26~27.
    [13].王艳铃,胡正嘉.VA菌根真菌对蕃茄线虫病的影响[J].华中农业大学学报,2000,019(001):0025~0028.
    [14].唐明,商鸿生.VA菌根真菌提高杨树抗溃疡病机制的研究[J],林业科学,2000,036(002):0087-0092.
    [15].刘廷荣,黄镇.生态条件对VA菌根真菌侵染烟草的影响[J].中国烟草科学,1998,(1):18~21.
    [16].贺学礼,李斌.VA菌根真菌植物相互选择性的研究[J].西北植物学报,1999,19(3):471~475.
    
    
    [17].王幼珊,范雅兰,张美庆.土壤类型栽VA真菌宿主相互选择中的作用[J].北京农业科学,1991,9(2):11~14.
    [18].张美庆,王幼珊,邢礼军.我国东南沿海地区AM真菌群落生态分布研究[J].菌物系统,1998b,17(3):274~277.
    [19].陈保冬.丛枝菌根真菌减轻植物锌、镉毒害机理[D].北京:中国农业大学,2002.
    [20].耿春女,李培军,韩桂云等.生物修复的新方法—菌根根际生物修复[J].环境污染治理技术设备,2001,2(5):20~26.
    [21].胡弘道.杉木台湾杉内生菌根之研究[J].中华林学季刊,1988,21(2):45~72.
    [22]. Lodge D J. Negative associations among VA-mycorrhizal fungi and some ectomycorrhizal fungi inhabiting the same root system[J].DIKOS, 1990,57:347~356.
    [23]. Safir S R. The influence of soil aeration on efficiency of vesicular-arbuscular mycorrhizal Ⅰ.Effect of soil oxygen on the growth and mineral uptake of Eupatorium oforatum L. inoculated with Glomus macrocarapum[J].New Phytol, 1981,88:649~659.
    [24].刘润进,沈长朋.VA菌根对植物生理生化代谢的影响[M].山东省首届青年科学工作者学术论文集,北京:中国科学技术出版社,1993.
    [25]. Ruizlozano J M, Azcon R. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal speceds and water status.[J]. Physiologia Plantarum, 1995,(3):427~478.
    [26]. Auge R M,Schekel KA, Wample RL.Greater leaf conductance of well watered VA mycorrhizal rose plant is not related to phosphorus nutrition[J].New Phytol. , 1986,103:107~116.
    [27].刘润进,罗新书,土施磷钾肥对湖北海棠实生苗菌根效应的研究[J].莱阳农学院学报,1989,6(4):23~27.
    [28]. Ruiz-Lozano J M, Azcon R ,Palna J M. Superoxide dismutase activity in arbuscular mycorrhizal Lsctuca sativa plants subjected to drought stress[J]. New Phytologist, 1996b, 134:327~333.
    [29].唐娴.VA菌根对植物抗旱性研究及菌株初选[J].新疆农业科学,95,(3):122~124.
    [30].刘润进,高秋莲,生兆江等.杜梨菌根苗几种培育方法的试验[J].莱阳农学院学报,1990,7(4):298~300.
    [31].刘润进,罗新书.VA菌根对中国樱桃实生苗生长和养分的影响[J],莱阳农学院学报,1988a,5(2):6~13
    [32]. Boyer J S, Mcpherson H G.Physiology of water deficits in ceraeal crops[J].Adv. Agron., 1975,27,1.
    
    
    *********[33] .Hanson A D, Nelsen C E .Wateradapation of crops to drought prone environments[M].in The
    Biology of crop Productibity, New York:Acadimic Press, 1980,77.
    *********[34] . Begg J E.,Turner N C.Crop water deficits[J].Adv.Agron., 1976,28:161.
    *********[35] .Nelson S E, Maiti.The effects of drought stress.mycorrhizal inoculation and soil nutrition on wheat
    yield[J].Phutopathology,1983,73:841-847.
    *********[36] .Auge R M,Schekel K A,Wample R I. Rose leaf elasticity changes in response to mycorrhizal
    colonization and drought acclimatation[J].Phydiol Plant, 1987,70:175-182.
    *********[37] .Ramakrishnan B. Infuluence of VAM fungus Glomus caledonius on free proline acdumulation in
    water-streesed maize[J].Current Science India,I988,57(19) :1082-1083.
    *********[38] .Ellis H J..Drought resistance of wheat plants inoculation with VA mycorrhizas[J].Plant and
    Soil, 1985,86:369-376.
    *********[39] .Safir G R. Nutrient status and mycorrhizal enhancement of water transport in soybean[J],Plant
    Phusiol, 1972,49:700-705.
    *********[40] .Allen M F. Influence of Vamycorrhizas on water movement through Bortelous gracilis[J].New
    Phytol., 1982,91:191-196.
    *********[41] .Auge R M. Greater Leaf conductance of well-watered VA mycorrhizal rose plants is not related to
    phosphorus nutrition[J].New Phytol.,1986,103(l):107-116.
    *********[42] .Hardie K.The effect of removal of ectraradical huphae on water uptake by vesicular-arbuscular
    mycorrhizal plants[J].New Phytol.,1985,101:677-684.
    *********[43] .Nelsen C E,Maiti.The effects of drought stress.mycorrhizal and nonmycorrhizal onion
    plants[.J]..Am.Soc.Hortic.Sci.,1982,107:271.
    *********[44] .Safir G R.VA mycorrhizas:plant and fungal water relations[M.,Proccedings of 6th
    NACOM,1985,161-164.
    *********[45] .Hardie K.Leyton L.The influnce of vesicular-arbuscular mycorrhizal on growth and water
    relations of red clover[J].New Phytol., 1981,89:599.
    *********[46] .Faber B A,Zasoski R J,Munns D N ,Shackel K A A. Method for measuring hyphal nutrient and
    water uptake in mycorrhizal plants[J].Can.J.Bot.1991.
    *********[47] .George E.Haeussler K.Kothari SK,Li XL.Marschner H. Contribution of mycorrhizal hyphae to
    nutrient and water uptake of plants[J].In:Read DJ DH Lewis AH Fitter and IJ
    
    
    Alexander(eds.)mycorrhizas in Ecosystems CAB International Wallingford Oxon UK,1992b ,42-48.
    [48] . Nelson C E,Safir G R.The water relations of well-watered mycorrhizal and nonmycorrhizal onion plants[J], Journal of American Society for Horticulture Science, 1982 ,107:272-274.
    [49] .Graham J H,Syvertsen J P,Smith M L.Water relations of mycorrhizal and phosphorus-fertilized non-mycorrhizal Cetrus under drought stress [J].. New Phytologist,1987, 105:413-419.
    [50] .Fitter A H ,Nichols R. The use of benomyl to control infection by vesicular-arbuscular mycorrhizal fungi[J].New Phytologist,1988 ,110(2) :201-206.
    [51] .Cui M ,Nobel P S. Nutrient status water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi[J].New Phytologist ,1992,122:644-649.
    [52] .Azcon R.Comez M,Tober R. Physiolocal and nutritional response by Lactuca satica L.to nitrogen source and mycorrhizal fungi under drought condition[J].Biol Fertile Soils, 1996 ,22:151-161.
    [53] .Kizhaeral S,Subramanian,Charest C. Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery[J].Physiologia Plantarum,1998, 102:285-296.
    [54] .Kizhaeral S.Subramanian ,Charest C. Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its inpact on physiological response in maize under drought-stress and well-watered conditions[J].Mycorrhiza,1999, 9:69-75.
    [55] .Ruiz-Lozano J M,Azcon R..Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants.Agriculture[J].Ecosystems and Environment, 1996c , 60:175-181.
    [56] .王元贞,张木清.水分胁迫下菌根菌接种对蔗叶活性氧代谢的影响[J].生态农业研究,1995,3 (2) : 10~15.
    [57] . Croker J L,Witte W T , Auge R M. Stomatal sensitivity of six temperate deciduous tree species to non-hydraulic root-to shoot signaling of partial soil drying[J].Journal of Experimental Botany,1998, 49,321:761-764.
    [58] .Ebel R C.Stodola A J W,Duan X R ,Auge R M. Non-hydraylic root-to-shoot signaling in mycorrhizal and non-mycorrhizal sorghum exposed to partial soil drying or root severing[J].New Phytologist, 1994, 127:495-505.
    [59] .Green C D,Stodola A ,Auge R M. Transpiration of detached leaves from mycorrhizal and nonmycorrhizal cowpea and rose plants given varying abscisic acid pH calcium and phosphorus[J].Mycorrhizal, 1998 , 8:92-99.
    
    
    [60]. Auge R M,Duan X G,Ebel R C,Stoloda A J W .Nonhydraulic signaling of soil drying in mycorrhizal maize[J].Planta, 1994,193:82-174.
    [61]. Campalans A,Messeguer R, Goday A, Pages M. Plant responses to drought from ABA signal transduction events to the action of the induced proteins[J]. Plant Physiology and Biochemistry (Paris), 1999,37,5:327~340.
    [62]. Wu Yan,Kuzma J,Marechal E,Graeff R, Lee HonCheung,Foster Rand Chua NamHai. Abscisic acid signaling through cyclic ADP-ribose in plants Science(Washington), 1997,278:5346 2126~2130.
    [63]. Loewenstein N J,Pallardy S G. Drought tolerance,xylem sap abscisic acid and stomatal conductance during soil drying a comparison of canopy trees of three temperate deciduous angiosperms[J].Tree Physiology., 1998,18:431~439.
    [64]. Goicoechea N,Antolin M C, Sanchez-Diaz M. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought[J]. Physiologia Plantarum, 1997,100:989~997.
    [65].弓明钦,陈应龙.菌根研究及应用[M].北京:中国林业出版社,1997,49~50.
    [66]. Danianlson R M, Visser S.Effect of forest soil acidification on ectomycorrhizal and vesicular-arbuscular mycorrhizal development[J].New Phytologist, 1989,112(1): 41-47.
    [67]. Wang G M, Stribey D P, Tinker P B,Walker C. Effects of pH on arbuscular mycorrhiza. Ⅰ. Field observations on the long term liming fcperinments at Rothamsted and Wburn [J]. New Phytol. 1993,124: 465~472.
    [68].张美庆,王幼珊,邢礼军.环境因子和AM真菌分布的关系[J].菌物系统,1999a,18(1):25~29.
    [69].张美庆,王幼珊,邢礼军,AM真菌在我国东南沿海各土壤气候带的分布[J].菌物系统,1999b,18(2):145~148.
    [70].郭秀珍,郑世楷,毕国昌.VA菌根对柽麻(Crotalaria juncea L.)的生长效应[M],杨树丰产栽培中间试验报告集,北京:中国林业科学研究院林业研究所,第1集,1985,151~164.
    [71].杨茂秋,冯固,白灯莎,黄全生.VA菌根对玉米和棉花吸收利用氮素的影响[J],1994,31(增刊):188~194.
    [72]. Sasai K. Infection of vesicular-arbuscular mycorrhizal fungi to plants and spore numbers in cultivated soils. In:Migayl Prefefcture[J].Scientific Reports of the Miyagl
    
    Agriculture College, 1992,40:1~10.
    [73].薛炳烨,罗新书.克服苹果苗圃地连作障碍初步研究[J],山东农业科学,1990,(4):18~19.
    [74].Tawaraya K, Saito M, Morioka M, et al. Effect of phosphate application to arbuscular mycorrhizal onion on the development and succiant dehudrogenase activity of internal hyphae[J].Soil Science and Plant Nutrition, 1994, 40(4):667~673.
    [75].Mosse B. Plant growth responses to vesicular-arbuscular mycorrhiza. Ⅳ. In soil given additional phosphate[J]. New Phytol., 1973, 72: 127~136.
    [76].Crossett R N, Loughman B C. The absorbtion and translocation of phosphorus by seedlings of Hordeum vulgate L[J].New Phytol., 1996: 459~468.
    [77].Li X.L., Marschner H,George E ,Phosphorus depletion and Ph decrease at the root-soil and hyphae-soil interfaces of VAM white clover fertilized with ammonium[J] ..New Phytol, 1991a. 119:397~404.
    [78].Li X L, Marschner H,George E,Extension of the phosphorus depletion zine in VAM white clover in a calcareous soil[J].Plant Soil, 1991b, 136:41~48.
    [79].张美庆,王幼珊,张弛.我国北部VA菌根真菌某些属和种的生态分布[J].真菌学报,1994,13(3):166~172.
    [80].Trappe J M. Phylogenetic and ecological aspects of mycotrophy in the Angiosperms from an evolutionary standpoint[M].In:Ecophysiology of VA mycorrhizal plants GR Safir(eds) p5-25 CRC Press Boca Raton FL. 1987.
    [81].王幼珊,张美庆,VA菌根真菌宿主植物间的相互选择性[J].北京农业科学,1989,6:4-7.
    [82]. Hayman D S, Johnson A M, Duddlesdin Ⅰ. The influence of phosphate and crop species on endogone spores and vesicular -- arbuscular mycorrhiza under field conditions[J].Pl. Soil,1975,43:489~495.
    [83]. Campo J A. Effect of crop rotations involving host and nonhost plants on vesiculararbuscular mycorrhizal infection of host plants[J].P1.Soil,1980,56:283~291.
    [84]. Hayman D S. Plant growth responses to vesicular-arbuscular mycorrhiza. Ⅵ. Effect
    
    of light and temperature[J]. New Phytol. 1974, 73:71-80.
    [85] . Feldman F , Idczak E. Inoculation of vesicular-arbuscular mycorrhizal fungi for use in tropical nurseries[M], In:JR Norris DJ Read AK Varma(Editors)Techniques for Mycorrhizal Research. London Academic Press 1992 799-817.
    [86] . S t-Arnaud M,Hamel C,Viraard B, et al. 1997. Inhibition of Fusarium oxysporum f.sp.dianthi in the non-VAM species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized Glomus intraradices[M]. Can. J. Bot 75:998-1005.
    [87] , C atska V. Interrelationships between vesicular-arbuscular mycorrhiza and rhizosphere microflora in apple replant disease[J]. Biologia Plantarum , 1994,36(1) :99-104.
    [88] , Diaz G, Roldan A, Albaladiho J. Influence of the soil type on colonization patterns and efficiency of mycorrhizal symbiosis of six Glomus specices Cryptogamie[J].Mycologia, 1992, 13:51-56.
    .盖京苹,刘润进,李晓林.山东省不同植被区内野生植物根围A M真菌的生态分布,生态学杂 志.2000.
    [90] .盖京苹,刘润进.野生植物根围的丛枝菌根真菌Ⅰ[J].菌物系统,2000a,19(1) .
    [91] .盖京苹,刘润进.野生植物根围的丛枝菌根真菌Ⅱ[J].菌物系统,2000b,19(2) .
    [92] .Pond E C.Menge J A,et al.Improved growth of tomato in salinized soil by vesicular-arbuscular mycorrhizal fungi collected from saline soils[J].Mycologia, 1984,76:74-84.
    [93] .Cooker J C,Butler R H,Madole G. Mycologia.1993,84(4) :547-550.
    [94] .Juniper S,Abbott L K.Abstracts,3rd European Symposium on Mycorrhizas[M].Shefiedld,UK, 1991.
    [95] . Poss J.A,Pond E,Menge A,et al. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate[J].Plant Soil,1985,88:307-319
    [96] . Duke E R,Johnson C R,Koch K. E. Accumulation of phosphorus.dry matter and betaine during NaCL stress of slip-root citrus seedlings colonized with versicular-arbuscular mycorrhizal fungi on zero one or two halves[J].New phytol., 1986,104:583-590.
    [97] . Gupta K, Krishnamurthy K V. Response of mycorrhizal and nonmycorrhizal Arachis hypogaea to NaCL and acid stress[J]..Mycorrhiza,1996,6:145-149.
    [98] . SUBRAMANIAN K S, CHAREST Confluence of arbuscular mycorrhizae on the
    
    metabolism under drought stress[J]. Mycorrhiza, 1995,5:273-278.
    [99]. ROBERT C EBEL, GREGORY E, WELBAUM. Arbuscular mycorrhizal symbiosis and nonhydraulic signaling of soil drying in Vigna unguiculata(L)Walp[J]. Mycorrhiza, 1996, 6:119-127.
    [100]. PHILLIPS J M, HAYMAN D S. Inproved procedures for clearing and ataining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Trans. Br. Mycol.Soc, 1970,55:158-161.
    [101]. ABBOTT L K, ROBSON A D,DE BOER G. The effect of phosphorus on the the formation of hyphae in soil by the vesicular mycorrhizal fungus,Glomus fasciculatum [J].New Phytol, 1984, 81:43~52.
    [102].汤章城.现代植物生理学实验指南[M].北京:科学出版社,1999:303.
    [103] 李晓林,冯固.丛枝菌根生态生理[M].北京:华文出版社,2001:168-178.
    [104] 陈洁敏,姜德锋,刘树堂等,丛枝菌根真菌对玉米生长生态效应的影响[J].生态农业研究,2000,8(3):25~27.
    [105].李瑞卿,张金政,田本良等.AM菌对大豆水分状况的影响[J].莱阳农学院学报,1999,16(2):116~119.
    [106].张美庆,王幼珊,邢礼军.VA真菌耐高磷营养菌株筛选[J].华北农学报,1995,10(3):76-79.
    [107]. Muthukumar T, Udaiyan K..Influence of native endomycorrhiza, soil flooding and nurse plant on mycorrhizal status and growth of purple nutsedge(cyperus Rotundus L.)[J].Agriculture Ecosystems & Environment, 1997,6(1):51~58.
    [108]. Michelini S.Nemec S, Chinnery L E.Relationships between environmental factors and levels of mycorrhizal infection of citrus on four islands in the Eastern Caribbean Tropical agriculture[J], 1993, 70(2): 135~140.
    [109].崔德杰,王维华,袁玉清等.AM菌提高植物抗旱机制的初步研究[J].莱阳农学院学报.1998,15(3):167~171.
    [110].王幼珊,张美庆.VA菌根对植物耐旱性研究及菌株筛选[M].见:土壤资源特性利用.北京:北京农业大学出版社,1992:366~369.
    [111].冯固,张玉凤,李晓林.丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响[J].水土保
    
    持学报,2001,15(4):99-102.
    [112].C.R. JOHNSON. Phosphorus nutrition on mycorrhizal, photosynthesis, growth and nutrient composition of Citrus aurantunm[J].Plant and soil,1984,80:35~42.
    [113].C.M. Gruhn R W, Roncadori P P, Kormanik. Interaction between a Vesicular-Arbuscular Mycorrhizal Fungus and Phosphorus Fertilization on Sweetgum Growth in loamy Sand and Kaolin Spoil[J].Reclamation and Revegetation Research, 1987,6:197~206.
    [114].郭秀珍,毕国昌.林木菌根及应用技术(M).北京:中国林业出版社,1989.
    [115].毕银丽,丁宝建,李晓林.VA菌根对冬小麦利用养分和水分的影响[J].土壤通报,2001,32(3):99-101.
    [116].陈宁,王幼珊,李晓林等.宿主植物栽培密度对AM真菌生长发育的影响[J].菌物系统,2003,22(1):88~94.
    [117].王发园,刘润进.环境因子对AM真菌多样性的影响[J].生物多样性,2001,9(3):301~305.