基于双目显微立体视觉系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,许多领域越来越迫切地需要微型系统或微动系统,如生物细胞、聚合物的各种操作、微外科手术、扫描探针显微镜SPM、光纤对接和微细加工等;而且随着微技术的不断发展,以形状尺寸微小、操作尺度极小为特征的微机械已成为人们从微观角度认识和改造客观世界的一种高新技术;微机械技术还有望成为研究纳米技术的重要手段,因此微机械被列为本世纪末10大关键技术之首,并受到各工业发达国家的高度重视。由于微操作工具和被操作对像的几何尺度及操作空间的限制,一般操作成功率低,制约了这项技术的普及和应用,为此本文提出了双目显微立体视觉技术的研究,借助于机器视觉来提高微操作的效率和精度。本文的主要工作和创新点包括:
     对显微立体视觉系统的光路进行了研究,并将单CCD显微系统改装成双CCD显微立体视觉系统,并对此系统的数学模型进行了研究。
     对图像的预处理进行了全面地研究,如图像的灰度化、平滑化、阈值选择、边缘检测、腐蚀、膨胀、轮廓提取、轮廓跟踪、图像分割、不变矩、Hough变换等,目的是产生一幅计算机易于识别和理解的图像,同时为立体匹配奠定了基础。本文采用了自动阈值选择技术,使阈值的选择更合理;对不变矩进行了优化,首次提出了旋转投影不变矩方法,适合粘连字符地识别。
     灰度匹配是利用图像的灰度对两幅图像进行立体匹配,以相关函数为判断依据对图像进行立体匹配。本文利用零交叉点作为特征点对图像进行特征立体匹配,这种匹配方法对对比度和光照的变化不敏感,同时在匹配过程中也运用了多个约束条件:如外极线约束、连续性约束等,从而提高了图像的匹配速度。
     对该系统进行了大量的实验,证明了该系统是合理的;对图像进行预处理,产生了一幅计算机易于识别和理解的图像,同时使计算量减低,计算速度提高,满足了图像处理的实时性;对图像的灰度匹配进行了实验,结果表明,本文采用的灰度匹配方法计算结果准确;本文的特征匹配方法具有稳定性,同时在匹配过程中使用了约束条件,从而匹配速度很快。总之,本文对图像预处理和立体匹配都进行了深入研究,并取得了一定的成果。
With the development of science and technology, the need of micro system is more and more urgent in many technical fields, such as various operation of cell and polymerized substances, micro surgery, scanning probe microscope(SPM), butting optical fiber, fine manufacturing etc. With the development of microtechnology, micro machine which has the character of micro size or micro motion is new high technology from microcosmic point of view understanding and reconstructing the world. Micro machine technology is important means for researching nanotechnology, so micro machine technology is the first of ten key technology at the end of century and is regarded importantly by developed countries. The ratio of successful operating is often low due to small size of micro tool, operated objects and working room. It is very difficult that the micro operation technology becomes widespread under the circumstances. In order to improve micro operation efficiency and precision with machine vision, this paper is researching
    dual CCD micro stereo vision technology. The main work and innovative ideas includes:
    The paper researches light route of the micro stereo vision system. The single CCD vision system is changed to the two CCD micro stereo vision system. The paper researches the math model of the dual CCD micro stereo vision system.
    The image pretreatment is researched widely which includes graying, smoothing, the choice of threshold value, edge detecting, erosion, dilation, outline detecting, outline tracing, image segment, moment invariants, hough transform etc. The aim of the image pretreatment obtains the image which computers easily identify and understand and establishes the base of stereo match. This paper adopts auto-threshold value technology which can select better threshold value. This paper puts forward rotating projection moment invariants which optimizes moment invariants and identifies conglutinate letters.
    The paper processes gray match with the image gray and on the basis of correlative function. The paper processes feature stereo match with zero crossing. This stereo match method is not sensitive to the change of contrast and illumination. At the same time, the paper applies restriction such as epipolar restriction and sequential restriction which can improve the velocity of the stereo match.
    The paper does many tests which test the system is reasonable. The image pretreatment
    
    
    not only offers the image which computers easily identify and understand but also count quantity decreases and the velocity of count improves which contents the image realtime processing. The gray match is tested which tests the method is accurate. The feature match in this paper is stable and applies restriction which improves the velocity of the match. In a word, this paper researches the image pretreatment and stereo match deeply which acquire some fruit.
引文
1.范伟政,马炳和.微机械与微细加工技术.西北工业大学出版社,2000:137-159
    2.王朝晖,蒋庄德,陈伟.基于显微视觉反馈的微装配作业系统研究.信息与控制.2002,31(7):724-727.
    3. Ge Yang, James A Gaines, Bradley J Nelson. A Flexible Experimental Workcell for Efficient and Reliable Wafer-Level 3D Microassembly. IEEE International Conference on Robotics and Automation, 2001:133-138.
    4.孙立宁,陈立国,刘品宽,等.微操作机器人显微视觉系统若干问题.光学精密工程,2002,10(2):171-175.
    5. T. Tanikawa, T. Arai and P. Ojala. Two-finger micro hand. IEEE International Conference on Robotics and Automation, 1995:1674-1679.
    6. T. Sato. Hand-Eye System in Nano Manipulation World. IEEE International Conference on Robotics and Automation, 1995:59-66.
    7. Junko Sakiyama, Motoi Okamoto, Hideki Yamamoto. A Fluorescent Tracing of Hilus-Granular Organization Utilizing Visual Feedback System. IEEE Instrumentation and Measurement Technology Conference, 2001:356-360.
    8. Mamoru Mitsuishi,Yasuhiro Hzuka. Remote operation of a micro-surgical system. IEEE International Conference on Robotics and Automation, 1998:1013-1019.
    9. K.W. Grace. A Six Degree of Freedom Micromanipulator for Ophthalmic Surgry. IEEE International Conference on Robotics and Automation, 1993:630-635.
    10. Wise K.D. Micromachines, MEMS and Microsystem. IEEE of JAPAN on Sensors and Micromachines, 1995, 115(12): 5-6.
    11. Joseph Alex,Barmeshwar Vikramaditya, Bradley J.Nelson. Teleoperated Micromanipulation within a VRML Enviroment Using Java. IEEE Intelligent Robots and Systems, 1998:1747-1752.
    12. John T Feddema, Ronald W Simon. CAD-Driven Microassembly and visual Servoing. IEEE International Conference on Robotics and Automation, 1998:1212-1219.
    13. Blake Hannaford, James Hewitt. Telerobotic Macro for Temote Handling of Protein Crystals. IEEE International Conference on Robotics and Automation, 1997:1010-1015.
    14. Won S.Kim. Computer vision assisted virtual reality calibration. IEEE International Conference on Robotics and Automation, 1999,15(3) :450-464.
    15. A.Sulzmann. 3D Computer Graphics Based Interface to Real Microscopic Worlds for μ Robot Telemanipulation and Position Control. ISBN:0-7803-2559-1/95,1995:286-291.
    16. Pasi Kallio, Leuven, Belgium. A 3 DOF Piezohydraulic Parallel Micromanipulator. IEEE International Conference on Robotics and Automation, 1998:1823-1828.
    17. Daniel Hauden. International Advanced Robotics Program-The French Microsystem Program and its Applications to Microrobotics and Systems. Beijin: 1998.14-21.
    18.毕树生,宗光华.微操作机器人系统的研究开发.中国机械工程,1999,10(9):1024-1027.
    
    
    19.刘连臣.微操作机器人及显微视觉伺服控制系统的研究:[博士学位论文].天津:南开大学,1998.
    20.“863”计划十五周年成就展材料.2001.4.
    21.安徽.压电陶瓷驱动六自由度并联微动机器人的研究:[博士学位论文].哈尔滨:哈尔滨工业大学,1995.
    22.徐征,刘冲,王立鼎,等.实时显微立体成像系统中闪烁问题的分析.仪器仪表学报增刊,2001,22(4):206-209.
    23. Hideki Yamamoto,Tetsuya Sano. Study of Micromanipulation Using Stereoscopic Microscope. IEEE Transactions on Instrumentation and Measurement, 2002, 51(2):182-187.
    24. Hideki Yamamoto,Junko Sakiyama. Stereoscopic Visual Servo System for Microinjection. IEEE Instrumentation and Measurement Technology Conference, 2002:1109-1112.
    25. Tetsuya Sano, Hideki Yamamoto. Study of Micromanipulation Using Stereoscopic Microscope. IEEE Transactions on Instrumentation and Measurement, 2000:1227-1231.
    26. Tetsuya Sano,Hideki Yamamoto. Micromanipulation using Stereoscopic Microscope. IEEE Transactions on Instrumentation and Measurement, 1999:1066-1069.
    27. Fumihito ARAI, Tomohiko SUGIYAMA, Toshio FUKUDA. Micro Tri-axial Force Sensor for 3D Bio-Micromanipulation. IEEE International Conference on Robotics and Automation, 1999.
    28. Sano T. A visual feedback system for micromanipulation with stereoscopic microscope. IEEE Instrumentation and Measurement Technology Conference, 1998:1127-1132.
    29. Koyano K, Sato T. Micro object handling system with concentrated visual fields and new handling skills. IEEE International Conference On Robotics and Automation, 1993: 2541-2548.
    30. Sulzmann A, Breguet J M,Jacot J. A 3D Computer Graphic-based microrobot telemanipulation and position feedback by vision. Microvision System, 1995: 38-49.
    31. Silvia Allegro, Christophe Chanel, Jacques Jacot. Autofocus for Automated Microassembly under a Microscope. IEEE Transactions on Instrumentation and Measurement, 1996:677-680.
    32. J.Brenner. An Automated Microscope for Cytologic Research---A Preliminary Evaluation. Journal of Histochemistry and Cytochemistry, 1976,24(1):100-111.
    33.王守杰,宗光华,毕树生.微操作机器人显微视觉系统的研究.机器人,1998,20(2):138-142.
    34.谢少荣.微系统拟实环境研究[博士学位论文]:天津:南开大学,2000.
    35. Li Luming, Wang Liding. Micromanipulator System in MEMS. IEEE International Conference on Industrial Technology, 1996:665-668.
    36.陈平.用于微细作业系统的立体成像技术研究.光学精密工程,2000,8(10):444-447.
    37.徐锡林.微位移高精度测量控制设计.现代计量测试,1997,1:11-14.
    38.王朝晖,蒋庄德,陈伟.基于显微视觉反馈的微装配作业系统研究.信息与控制,2002,31(7):724-727.
    39.李向吉,丁润涛.脉冲噪声污染图像中的数学形态边缘检测器.中国图像图形学报,1998,3(11):903-906.
    40.李作新,胡广宁.立体视觉与体视匹配.小型微型计算机系统,1990,11(2):43-50.
    41. L.G.Roberts. Machine perception of the three-dimensional solids. Optical and Electro-oprtical Information Processing, 1965:159-197.
    42. D.Marr. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information., San Francisco: W.H.Freeman and Company, 1982.
    
    
    43. Martins H A, Birk J R, Kelley R B. Camera models based to data from two calibration planes. Computer Graphics and Imaging Processing, 1981,17:173-180.
    44. Carpenter G A, Grossberg S.ART-2. Self-Organization of Stable Category Recognition Codes for Analog Input Patterns. Applied Optics, 1987,26(25):4919-4930.
    45. Lowe D G. 3 D Object Recognition from 2D Image. Artificial Intelligence, 1987,31:16-17.
    46. Seibert M, Waxman A M. Adaptive 3D Object Recognition from Multiple Views. IEEE Trans Pattern Analysis and Machine Intelligence, 1992,14(7): 107-124.
    47.龚进锋.高压带电作业机器人视觉定位与路径规划的研究[博士学位论文]:天津:天津大学,2002.
    48.邱茂林,马颂德,李毅.计算机视觉中摄像机标定综述.自动化学报,2000,26(1):43—55.
    49. Faig W. Calibration of close-range photogrammetric systems:mathematical formulation. Photogrammetric eng. Remote sensing, 1975,41(12)21479-1486.
    50. Abdel-Aziz, Karara H M. Direct linear transformation into object space coordinates in close-range photogrammetry. In:Proc.Symp. Close-Range Photogrammetry, 1971:1-18.
    51. Ganapathy S. Decomposition of transformation matrices for robot vision. IEEE International Conference on Robotics and Automation, 19842130-139.
    52. Tsai R Y. An efficient and accurate camera calibration technique for 3D machine vision. In: Proc. CVPR'86:364~374.
    53. Weng J, Cohen P, Herniou M. Camera calibration with distortion models and accuracy evaluation. IEEE Trans. PAMI, 1992,14(10): 965~980.
    54. Longuet-Higgins H C. A computer algorithm for reconstructing a scene from two projections. Nature, 1981, 10:133-135.
    55. Faugeras O D, Maybank S. Motion from point matches: multiplicity of solutions. Intl. J. Computer Vision, 1990, 4: 225~246.
    56. Maybank S J, Faugeras O D. A theory of self-calibration of a moving camera. Intl. J. Computer Vision, 1992,8(2): 123-151.
    57. Ma S, Wei G. A self-calibration technique for active vision system. In: Proc. ACCV, 95:628-631.
    58. Ma S. A self-calibration technique for active vision system. IEEE International Conference on Robotics and Automation, 1996,122 114-120.
    59. Faugeras O D, Mourrain B. On the geometry and algebra of the point and line correspondences between n images. In: Proc. ICCV'95:951-956.
    60. Hartley Ri. A Linear method for reconstruction from lines and points. In: Proc. ICCV'95: 882-887.
    61. Heyden A. Reconstruction from Image Sequences by Means of Relative Depths. In: Proc. ICCV'95: 1058-1063.
    62. Shashua A. Trilinear functions for visual recognition. In: Proc. ECCV'94: 479-484.
    63. Shashua A, Werman M. On the trelinear tensor of three perspective views and its underlying geometry. In: Proc. ICCV'95.
    64. Shashua A. Algebraic function for recognition. IEEE Trans. PAMI, 1995, 17: 779-789.
    65.陈熙霖.视觉计算—人类感知能力的延伸.测控技术,2000,19(5):7-14.
    66.张爱武,李明哲,胡少兴.一种用于三维曲面视觉测量的立体精匹配方法.光学技术,2001,27(2):115-117.
    
    
    67. Kanade T, Yoshida A, Oda K, et al. A stereo machine for video-rate dense depth mapping and its new applications. Proc. 15 CVPR, 1996:196-202.
    68.孙季丰,陈海东,方少元.立体视觉中的模糊匹配法及其实现.华南理工大学学报(自然科学版),1998,26(7):39-45.
    69. Baker H H. Depth from edge and intensity based stereo. Proc. 7th IJCAI, 1981:631-636.
    70. Aronld R D. Automated Stereo Perception. Standford University Tech. Rep. STAN-CS-83-961,1983
    71. Ohta Y. Stereo by intra-and inter-scanline search using dynamic programming. IEEE Trans. On PAMI, 1985, 7:139-154.
    72. Llogd S A. A Paraller Bigocular Stereo Algorithm Utilized Dynamic Programming and Relaxation Labelling. CVGIP, 1987, 39: 202-225.
    73. Kim Y C. Finding range from stereo image. Proc. of IEEE Conf. On CVPR, 1985: 289-294.
    74. Medioni G. Segment-Based Stereo Matching. CVGIP, 1985, 31(1): 2-18.
    75. Nasrabadi N M. A Stereo Vision Technique Using Curve-Segments and Relaxation Matching. IEEE Trans. on PAMI, 1992,14(2): 566-572.
    76. Lee H J. Region Matching and Depth Finding for 3-D Objects in Stereo Aerial Photographs. Pattern Recognition, 1990,23(2): 81-93.
    77. S. Tanimoto and T. Pavilids, Hierarchical data structure for picture progressing. Computer Graphics and Image Processing, 1975, 4:104-119.
    78. Ballard D H,Brown C.M. Computer Vision. Prentice-Hall:1982.
    79.余武荣,周军,周源华.采用小波变换的立体匹配:一种基于相位的方法.信号处理,1999,15(4):321-324.
    80.董玉华.六倍连续变倍双目立体显微镜的光学设计.光学精密工程,1995,3(3):14-17.
    81. A K Jain, A Vailaya. Image retrieval using color and shape. Pattern Recognition, 1996, 29(8):1233-1244.
    82. B M Mehtre. Shape measures for content based image retrieval: a comparison. Information Processing & Management, 1997, 33(3):319-337.
    83. B M Mehtre. Content-based image retrieval using a composite color-shape approach. Information Processing & Management, 1998, 34(1): 109-120.
    84. Hu M K. Visual Pattern Recognition by Moment Invariants. IRE Trans. Information Theory, 1962,8:179-187.