电压互感器的现代设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,在电压互感器设计中,虽有人进行过可靠性设计和优化设计方面的研究,但采用的方法仍为传统方法。本文采用现代设计方法,它将有限元分析、可靠性设计技术和优化设计技术有机的结合起来,因此采用现代设计方法得到的方案比利用传统设计方法设计出的方案更加经济合理。
     首先,本文简单介绍了电压互感器的原理,描述了电压互感器的分类、基本参数和误差分析。
     第二,本文研究了电磁场有限元分析原理,介绍了麦克斯韦方程和电磁场微分方程。本文采用大型通用有限元分析软件ANSYS对电压互感器进行二维电磁场有限元分析,对电压互感器建立了有限元数学模型和网格剖分,对有限元模型加载了边界条件并进行了求解。研究了二维磁场分析单元PLANE53单元和电路模拟单元CIRCU124单元的特点及使用方法。
     第三,对电压互感器的瓷套部分进行了可靠性设计。瓷套所受的弯曲负荷应力很多,主要包括:风力负荷产生的弯曲应力,地震负荷产生的弯曲应力,产品运输中倾斜产生的弯曲应力。本文研究了瓷套的应力分布的确定方法,将多种应力叠加在一起,推出了应力分布参数的计算公式。瓷套的应力、强度和各设计变量均可认为服从正态分布,在设计时作为正态分布变量处理。本文应用应力—强度干涉理论,对电压互感器瓷套的可靠性设计方法进行了研究。
     第四,研究了ANSYS软件的优化设计模块,研究了采用ANSYS软件进行优化设计的步骤和优化工具及方法。利用ANSYS软件的参数化设计语言与其OPT模块,实现了有限元数值计算与优化设计的有机结合。并以额定一次电压35KV,额定二次电压100V,额定频率50HZ的电压互感器为例,进行了有限元分析计算和优化设计。根据电压互感器产品设计的实际情况,确定设计变量为绕组导线规格和铁心结构尺寸。优化循环结束以后,可以选择列出所有参数的数值,也可以只列出优化变量,可以用图显示指定的参数随序列号的变化情况,通过多方案的比较,得到最优方案。
     将现代设计方法应用于生产厂家,可节省研究开支,大大缩短开发周期,减少计算误差,减少试验费用,降低成本,提高产品的可靠性,因此本项目的研究具有良好的经济效益和社会效益。
By far, some reliability designs and optimization designs of voltage transformer are studied, but the methods they adopted are still traditional. This paper adopts modern design method which combines with finite element analysis, reliability design technique and optimization design technique, so the schemes obtained by modern design method are more economical and proper than those obtained by traditional method.
    At first, in this paper, the principle of voltage transformer is introduced, and the classification, basic parameters and error analysis of voltage transformer are stated.
    Secondly, the principle of finite element analysis of electromagnetic field is studied, Maxwell equations and differential equations are stated. In this paper, two dimensional finite element analysis of electromagnetic field to voltage transformer is studied by finite element analysis software ANSYS. Finite element mathematic model is built, and meshing subdivision is made, and boundary conditions are loaded on the finite element mathematic model and solution is done. Two dimensional magnetic field element PLANE53 and circuit simulation element CIRCU124 are studied.
    Thirdly, Reliability design of voltage transformer's porcelain sleeve is made. There are many sorts of bend stresses for the porcelain sleeve to endure, mainly including wind, earthquake, and inclination during product transportation. In this paper, determining method of stress distribution was investigated. Various stresses are superposed to deduce the calculation formula of stress distribution. The stress, strength and other design variables of porcelain sleeve can all be considered to obey normal distribution, and dealt as normally distributed variables during calculation. With the Stress-Strength interference Theory, the reliability design of voltage transformer's porcelain sleeve was studied.
    Fourthly, the optimization design module of ANSYS is studied, and the optimization design steps and optimization method are studied. The organic combination between FEA numerical calculation and optimization design is realized by the parameterized language and the optimization design module of ANSYS. As an example, Finite element analysis and optimization design are made to a voltage transformer of rating primary voltage 35KV, rating secondary voltage 100V, rating frequency 50HZ. After the optimization design loop, all the parameters can be listed, and the design variables can also be listed separately, the graphs can be displayed which indicate the appointed parameters alternating with the serial number. Through the comparison of many schemes, the best one can be obtained.
    
    
    If the modern design method is applied to manufacturers, we can reduce investment outlay, shorten development cycle, reduce calculation error, cut down experimental expense, reduce the cost and advance the reliability, so the study of the subject can yield good economic returns and social benefit.
引文
1.张军,肖耀荣,刘在勤.《互感器设计》,沈阳:沈阳变压器研究所,1993
    2.陆俭国,苏秀苹.《电器电磁系统可靠性优化设计理论与应用》.北京:机械工业出版社,2003:33—83
    3.王启,王文博等.《常用机械零部件可靠性设计》.北京:机械工业出版社,1996:1—18,55—90
    4.刘善维.《机械零件的可靠性优化设计》.北京:中国科学技术出版社,1993:3—105
    5.苏秀苹.《电器电磁机构可靠性设计技术及优化设计技术的研究》:[博士学位论文].河北工业大学,1999
    6.唐兴伦,范群波,张朝晖等.《ANSYS工程应用教程》:电磁学篇.北京:中国铁道出版社,2003
    7.唐国强.《实用工程数值模拟技术及其在ANSYS上的实践》.西安:西北工业大学出版社,1999
    8.许惠中.《电流互感器和电压互感器的常用接线方法和使用注意事项》.电世界,1995,(36)1:44
    9.尚振球,郭文元.《高压电器》.西安:西安交通大学出版社,1992:176—185
    10.机械工程手册、电机工程手册编辑委员会.《电机工程手册》:输变电、配电设备卷.北京:机械工业出版社,1997:2—63
    11. Chitore D S. Compensation of errors in a voltage transformer by an electric circuit. Int J Electron 1991, (70), 1
    12.虞育号,李震声,马兆明.《高压电压互感器测试误差及解决措施》.变压器,1991,(28)5:37—38
    13.黄海.《利用ANSYS软件进行水磁电机的磁场分析》.船电技术,2001,(2):9—13
    14.周海亭,陈莲.《子结构方法在ANSYS软件中的应用》.噪声与振动控制,2001,(4):16—18
    15.田龙中,李卫东.《华为AVANSYS电源模块应用输入软启动电路的设计》.今日电子,2000,(7):16—19
    16.姚陶生.《ANSYS有限元分析软件在机车主发电机电磁场分析中的应用》.内燃机车,1999,(2):1—6
    17.罗海岩,陆继东,黄来等.《铝电解槽三维电热场的ANSYS分析》.华中科技大学学报,2002,(30)7:4-6
    18.美国ANSYS公司.《ANSYS电磁场分析指南》.
    19.赵强,赵争鸣,高徐娇.《水磁电机中永磁体尺寸优化设计》.电机电器技术,2001,(3):2—5
    20.王世山,王德林,李彦明.《有限元软件ANSYS电磁学科的使用及其在电力变压器分析中的应用》.西安石油学院学报,2002,(17)5:66-70
    21. W.Wnsche, C. Clau, P. Schwarz, F.Winkler. Microsystem Design using Simulator Coupling. Proceedings of the 1997 European conference on Design and Test.
    22.史锋义,何荣涛,江枫等.《静电场数值计算方法与数值分析》.沈阳工业大学学报,1999,(21)6:512-515
    23.变压器制造技术从书编审委员会编.《变压器绕组制造工艺》.北京:机械工业出版社,1998
    24.变压器制造技术丛书编审委员会编.《变压器铁心制造工艺》.北京:机械工业出版社,1998
    25.刘其永.《电器绝缘结构设计原理》.北京:机械工业出版社,1998
    26.“电工材料应用手册”编委会.《电工材料应用手册》.北京:机械工业出版社,1999
    27.张相庭.《结构风压和风振计算》.上海:同济大学出版社,1985:16—38
    28.聂清德.《化工设备设计》.北京:化学工业出版社,1991:49—58
    
    
    29.范鸣王.《最优化技术基础》.北京:清华大学出版社,1982
    30. Tabu search method with random moves for globally optimal design. International Journal for Numerical Methods in Engineering. 1992, 35: 1055—1070
    31.孟庆龙,王赞明.《电器计算机辅助设计》.北京:机械工业出版社,1998:41—62
    32. Sawa T, Kurasawa K,Kaminishi T. Development of optical instrument transformers. IEEE Trans Power Delivery. 1990,(5)2
    33.美国ANSYS公司.《ANSYS优化分析指南》.