复杂系统的鲁棒自适应控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了鲁棒自适应控制的两个理论问题,分为以下两部分:
     一.相对阶n~*=3的具有未建模动态系统的鲁棒直接型模型参考自适应控制
     考虑下面的单输入单输出系统其中u_p,y_p∈R~1分别是系统的输入和输出,参数a_i和b_j(i=0,…,n-1,j=0,…,m-1)是未知常数,Δ_k(s)(k=1,2)是关于输入和输出的未建模动态,μ_k≥0(k=1,2)是参数。
     控制目标是设计具有未规范化自适应律的直接型模型参考自适应控制律u_p,使得闭环系统的所有信号有界,同时使跟踪误差尽可能地小,这里其中y_m,r∈R~1,r(t)是参考输入,它是分段连续和一致有界的。
     对该系统,作如下假设:
     (P_1) Z_p(s)是Hurwitz多项式;
     (P_2) G_p(s)的相对阶n~*=n-m=3;
     (P_3) 高频增益K_p的符号已知,且存在常数,使得。
     对参考信号y_m(t)作如下假设:
     (M_1):Z_m(s)和R_m(s)是阶次分别为q_m和P_m的首一Hurwitz多项式,且P_m≤n;
     (M_2):参考模型的相对阶p_m-q_m=3.;
     (M_3):参考输入r。
    
     该部分对于相对阶记=3的具有未建模动态的一类系统,给出了具有未
    规范化自适应律的普棒直接型模型参考自适应控制器的设计方法,分析了闭
    环系统的稳定性和性能
     二.具有时变参数的分散系统的自适应反推控制
     考虑如下有N个关联子系统组成的复杂系统
    活沉(亡)==A。‘(忿)x区(亡)+b沉(t)。‘(t)+
    从(t)=呱(1+户“△‘*(s))x。‘(t)+
    扬(t,脚),
    肠△*j(,)脚,
     “半
    N︻,﹂笋Nl,1比
    其中xo‘(t)任R叭,夕*(t)〔R,。‘(t)任R分别是第葱个子系统的状态,输出和输
    入;A。‘(t),b。‘(t)是时变矩阵,Co‘是常数矩阵;凡(t,场)。R“‘和△勺(s)场(‘笋J)
    分别表示第j个子系统到第乞个子系统的静态干扰和动态干扰项;△“(习是
    第葱个子系统的未建模动态,户勺>0是参数.
     控制目标是对每一个子系统设计一个局部自适应控制器,使整个关联系
    统稳定并且使所有的输出y,渐近地充分小.
     对该系统,作如下假设:
     假设1
     (l)对每一个子系统,系统的阶n‘和相对阶八=n、一m*己知;
     (2)系统的高频增益b黔(t)的符号已知,并且存在一个常数占>0,使
    1乙:n’(t)}>占,V亡全。;
     (3)多项式B“(s)=b尹:(‘)sm!+…+公(t)s+b牙(t)是一致Hurwitz的,即
    B,,(s)的所有零点z,,(t)(J=1,…,。,)满足Re(z‘,(t))三一占,Vt全。,占>o是一
    常数.
     假设2
     (l)时间函数a,(艺)#t,bj(t)是可微且有界的,且它们的导数是分段连续的
    并且有界,即存在常数庆l>0,刀、:>0使得}d、(t)}三月‘1,!bj(t)}三风2‘·
     (2)10‘(‘)l和I。‘(‘)l‘分上界分另,J是M0‘和姚‘,其中“、(‘)议砖而,氏(‘)-
    (b少‘(t),…,b分(t),a犷‘一‘(‘),…,a牙(t))T是未知的参数向量.
    
     假设3
     对于非线性关联项凡(t,外),满足“凡(t,巧)lI三凡助},其中凡>0.
     假设4
     △以s)“=l,…,N;j二1,…,川稳定且严格正则并且带有单位高频增
    益.
     该部分针对一类有N个具有任意阶的关联子系统组成的分散系统,继
    续研究了鲁棒自适应控制问题,严格地给出了闭环系统的性能分析.
This paper mainly deals with two theoretical problems of robust adaptive control. It is composed of two parts.
    一. Robust Direct Model Reference Adaptive Control for Relative Degree n* = 3 System with Unmodeled Dynamics
    Consider the following SISO plant
    where are the plant input and output, respectively, , parameters ai and bj(i = 0,...,n -1, j = 0, ...,m -1) are unknown constants, k(s)(k = 1,2) are the unmodeled dynamics of the system, (k = 1,2) are parameters.
    The control objective is to design a robust direct model reference adaptive control law up with unnormalized adaptive law such that all signals in the closed-loop plant are bounded and the tracking error e1(t) yP(t)-ym(t) is small enough, where
    where ym,r R1, r(t) is a piecewise continuous uniformly bounded signal.
    We give the following assumptions for the plant:
    (P1) Zp(s) is Hurwitz polynomial;
    (P2) The relative degree of Gp(s) is n* = n - m = 3;
    (P3) The sign of the plant high-frequency gain Kp is unknown and there exist a constant K > 0 such that |KP| > K.
    For the reference model , we need assumptions:
    (M1) Zm(s),Rm(s) are monic Hurwitz polynomials of degree qm,pm respectively ,where pm < n;
    
    
    (M2) The relative degree of the reference model equals to n* = pm - qm= 3;
    (M3) The reference input
    In this part, for a kind of systems with unmodeled dynamics and the relative degree n* = 3, we give the design method of a robust direct model reference adaptive controller with unnormalized adaptive law, and analyze stability and performance of the closed-loop system.
    二. Adaptive Backstepping Control of Decentralized Plants with Time-varying Parameters
    Consider the following large-scale system consisting of N interconnected sub-systems,and the ith subsystem is modelled by
    
    where are the local states,output and input, respectively; are time-varying matrices,Coi is constant matrice; and denote,respectively,the static interactions and the dynamic interactions from the jth subsystem to the ith subsystem; ii(s) is the unmodeled dynamics in the ith subsystem;and uij> 0 are parameters.
    Control objective is to design a local adaptive controller for each subsystem such that the overall interconnected system is stable and all the outputs yi is sufficiently small asymptotically.
    For the plant , we need the following assumptions:
    Asumption 1
    (1) The plant order ni and its relative degree are known;
    (2) The sign of the plant high-frequency gain bmii(t) is knowm and there exist a constant > 0 such that
    (3) The polynomial is uniformly Hur-witz, i.e. all zeros of Bit(s) satisfy the equality: Re(zij(t)) <
    
    
    -6, Vt >0 for some constant 6 >0. Asumption 2
    (1) Time functions ai(t) and bj(t) are difFerentiable and bounded, and there derivatives are both piecewise continuous and bounded, i.e. there exist constants such that
    (2) Upper bound and known,where unknown parameter vectors.
    Asumption 3
    For the nonlinear interactions fij(t,yj), we have where
     > 0.
    Asumption 4
     are stable and strictly proper with unity high- frequency gains.
    In this part, for a large-scale system consisting of N interconnected subsystems with arbitrary degree, we continue to study the robust adaptive control problem and give rigorous performance analysis of the closed-loop system.
引文
[1] Ioannou P A, Sun J. Robust Adaptive Control. Englewood Cliffs, New Jersey: Prentice-Hall, 1996
    [2] Morse A S. High-order parameter tuners for the adaptive control of linear an nonlinear systems. In: Proceeding of the U.S-Italy Joint Seminar on Systems, Models, and Feedback: Theory and Applications, Capri, Italy, 1992
    [3] Morse A S. A comparative study of normalized and unnormalized tuning errors in parameter-adapative control. In: Proceeding of the 30th IEEE Conference on Decision and Control, Brighton, England, 1991
    [4] Miyasato Y. A model reference adaptive controller for systems with uncertain relative degrees r, r=1 or r+2 and unknown signs of high-frequency gains. Automatica, 2000, 36(6):889-896
    [5] Xie X J, Wu Z J, Zhang S Y. Direct model reference adaptive control with unnormalized adaptive law. Control and Decision, No:02-886, accepted(in Chinese)
    [6] Xie X J, Wu Y Q. Robust model reference adaptive control with hybrid adaptive law. International Journal of Systems Science, 2002, 33(14):1109-1119
    [7] Narendra K S, Annaswamy A M. Stable Adaptive Systems. Englewood Cliffs, New Jersey: Prentice Hall, 1989.
    [8] Sastry S, Bodson M. Adaptive Control: Stability, Convergence and Robusthess. Englewood Cliffs, New Jersey: Prentice Hall, 1989.
    [9] M.Krstic,Ikancllakopoulos,and P.Kokotovic, Nonlinear and Adaptive Control Design [M]. New York: Wiley, 1995.
    [10] F.Giri, A.Rabeh, F.Ikhouane. Backstepping adaptive control of time-varying plants [J]. System and Control Letters,1999,36:245-252.
    [11] Ying Zhang, Chanyun Wen, Yeng Chai Soh. Robust decentralized adaptive stabilization of interconnected systems with guaranteed transient performance [A]. Automatic,2000,36:907-915
    [12] Krsti M, Kanellakopoulos I and Kokotovi P V. Nonliear design of adaptive cotrollers for linear systems. IEEE Transaction on Automatic Control, 1994, 39:738-752.
    [13] Hsu L,Costa R. Bursting phenomena in continuous-time adaptive control system with σ-modification.IEEE Transaction on Automatic Control, 1987, 84-86.
    
    
    [14] Sastry S, Bodson M. Adaptive Control: Stability, Convergence and Robustness. New Jersey: Prentice Hall,1989.
    [15] Narendra K S, Annaswamy A M. Stable Adaptive Systems. New Jersey: Prentice Hall,1989.
    [16] Hsu L, Costa R, Imai A K, Kokotovi P. Lyapunov-based adaptive control of MIMO systems. Proceedings of American Control Conferences, Arlington USA, June, 2001: 4808-4813.
    [17] Tao G, Ioannou P A. Robust model reference adaptive control for multivariable plants. International Journal of Adaptive Control and Signal Processing, 1988, 2(3): 217-248
    [18] Imai A K, Costa R, Hsu L, Tao G, Kokotovi P. Multivariable MRAC using high frequency gain matrix factorization. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, USA, 2001: 1193-1198.
    [19] Fradkov A L, Miroshnik I V, Nikiforov V O. Nonlinear and Adaptive Control of Complex Systems. The Netherlands: Kluwer Academic Publishers. 1999.
    [20] Chien C J and Fu L C. A new approach to model reference control of a class of arbitrarily fast time-varying unknowm plant. Automatic,Vol.28,pp,437-440,1992.
    [21] Tsakalis K S and Ioannou P A. A new adaptive control scheme for time-varying plants. IEEE Transactions on Automatic Control,Vol.35,pp.697-705.1989(b).
    [22] Tsakalis K S and Ioannou P A. Adaptive control of linear time-varying plants:a new model reference controller structure. IEEE Transactions on Automatic Control,Vol.34,pp. 1038-1046,1989(a).
    [23] Y.Zhang and P.A.Ioannou. Nonlinear Control Design for Linear Time Varying Systems. Proc.35th Conf. on Decision and Control, Kobe. Japan. 1995.