用户名: 密码: 验证码:
二茂铁Friedel-Crafts酰基化反应新型催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文制备了3种固体酸ZrO_2/SO_4~(2-)(SZ)、二氧化硅负载的聚三氟甲烷磺酸硅氧烷(S-PTFMSS)和膨润土负载的聚三氟甲烷磺酸硅氧烷(B-PTFMSS);首次研究了其对二茂铁Friedel-Crafts酰化反应的催化活性;通过红外光谱、吡啶吸附的红外光谱、X-射线粉末衍射、差热—热重分析、比表面积测定和酸强度测定以及扫描电镜对其进行了表征。
     实验发现:对SZ催化剂的制备,600~700℃为适宜的焙烧温度,制备的SZ样品SZ-600和SZ-700,具有较大的比表面(分别为118.58和116.68 m~2/g)和超强酸性(H~0<-13.76),且样品表面同时存在Br(?)nsted酸和Lewis酸中心;结构中包含了四方晶相和少量单斜晶相的二氧化锆;样品中硫酸根呈双齿螯合配位。SZ-600和SZ-700对二茂铁与己酰氯反应的催化活性较为显著,己酰基二茂铁的产率分别为39.3%和48.2%。
     S-PTFMSS催化剂的结构与载体二氧化硅保持一致的晶相,但比表面显著增加(S-PTFMSS为78.78 m~2/g,载体二氧化硅为0.53 m~2/g)。其表面同时具有Lewis酸和Br(?)nsted酸中心。S-PTFMSS可有效地催化二茂铁的酰化反应(例如丙酰基二茂铁产率为31.8%),具有在反应体系中稳定,可以多次重复使用的特点。
     B-PTFMSS为首次制备和表征的催化剂。与载体膨润土(主要成分为蒙
    
    内蒙古大学硕仁学位论文
    脱石)比较,B一PTFMSS结构中的蒙脱石层间距显著缩小,比表面积也比
    载体有所增大(B一PTFMss为83.2om,/g,载体膨润土为50.75 mZ/g)。其表
    面同时具有LewiS酸和Br6nsted酸中心。S一PTFMSS对二茂铁的酞化反应
    具有很好的催化活性,催化二茂铁和长链状脂肪酞氯(碳数大于4)的反应
    产率大于70%,而且重复使用效果良好。
     这3种固体酸催化剂具有稳定性高、易于分离、不腐蚀设备、不产生
    废液和可回收再利用的优点,而且反应条件温和,反应时间也较短。尤其
    是B一PTFMSS的催化活性与传统催化剂三氯化铝媲美,具有良好的应用前
    上之J
    月又。
Three solid acids, ZrO2/SO42- (SZ), silica-supported polytrifluromethane-sulfosiloxane (S-PTFMSS) and bentonite-supported polytrifluromethanesulfo-siloxane (B-PTFMSS) have been prepared and firstly used as catalysts for Friedel-Crafts acylation of ferrocene. Moreover, they have been characterized by IR spectra, pyridine adsorbed IR, XRD, TDA-TG, specific surface area and SME.
    It was found that for SZ catalysts 600-700 C was the appropriate calcination temperature giving SZ-600 and SZ-700 with specific surface area of 118.58 and 116.68 m2/g respectively. On their surfaces, there are both Br nsted acid sites and Lewis acid ones. XRD indicates that crystalline structures of SZ-600 and SZ-700 contain dominant tetragonal and monoclinic zirconia and IR studies suggest that there are chelating bidentate sulfate in SZ-600 and SZ-700 samples which showed higher catalytic activities in the acylation of ferrocene in the yield of caproyl ferrocene of 39.3% and 48.2%, respectively.
    S-PTFMSS keeps identical crystalline structure to its supporter and has a remarkably larger specific surface area of 78.78 m2/g in comparison with the
    
    
    
    supporter, silica which has a surface area of 0.53 m2/g. On the surface, both Bronsted and Lewis acid sites are located. S-PTFMSS can effectively catalyze the acylation of ferrocene with propionyl chloride in the yield of 31.8% and is very stable in the reaction conditions and can be repeatedly reused several times.
    It is the first time for B-PTFMSS to be prepared and characterized. In the structure, the interlayer length of montmorillonite shrinks greatly. The specific surface area of B-PTFMSS (83.20 m2/g) is larger than its supporter (50.75 m2/g). S-PTFMSS with both Bronsted and Lewis acid sites showed very high catalytic activities in the acylation of ferrocene and the yield of acylferrocene is larger than 70% when the total carbon number of aliphatic acyl chlorides ^4. The recycled B-PTFMSS gave good yields of acylferrocene also.
    The three solid acid catalysts possess the advantages of high stability, easy separation, non-corrosiveness and can be regenerated and reused, the reaction condition is mild as well. B-PTFMSS shows high activities in the acylation of ferrocene giving similar yields as conventional Lewis acid aluminium chloride.
    The title novel catalysts have promising future of application in the acylation of Friedel-Crafts acylation.
引文
[1] 李保国,边占喜,胡瑞珏等编著,二茂铁衍生物的合成,内蒙古大学出版社,2003,10-35
    [2] Green S.J., Le-Poul N., Edwards P.P., et al., J. Am. Chem. Soc. Commun., 2003, 125, 3686-3687
    [3] Chen W.Y., Lu J., Zhang Y.W., et al., Chi. Chem. Left., 2001, 12, 1079-1081
    [4] Patel B.P,, Soloveichik G.L., Whisenhunt D.W., et al., U.S. Patent 6187942, Feb.13, 2001
    [5] Pals G.C., Zhang X.C., Marchand C., J. Med. Chem., 2002, 45(15), 3184-3194
    [6] Rosenblum M., Woodward R.B., J. Am. Chem. Soc.. 1958, 80, 5443-5449
    [7] Graham D.J., Lindsey P.V., Parshall G.W., et al., J. Am. Chem. Soc., 1957, 79, 3416
    [8] Smith J.V., Chem. Rev., 1988, 88, 149-182
    [9] [美]Anderson R.B.编,催化研究中的实验方法,第二卷科学出版社,1987
    [10] Chiche B., Finiels A., Gauthier C., et al., J. Org. Chem., 1986, 51, 2128-2130
    [11] Paul V., Sudalai A., Daniel T., et al., Tetrahedron Letters, 1994, 35(16), 2601-2602
    [12] Richard F., Carreyre H., Pérot G., J, Catal., 1996, 159, 427-434
    [13] Chaudhary V.R., Jana S.K., Kiran B.P., J. Catal., 2000, 192, 257-261
    [14] Berreghis A., Ayrault P., Fromentin E., et al., Catal. Lett., 2000, 68, 121-127
    [15] Casagrande M., Storaro L., Lenarda M., et al., Appl. Catal. A, 2000, 201,263-270
    [16] Das D., Cheng S., Appl. Catal. A, 2000, 201, 159-168
    [17] Escola J.M., Davis M.E., Appl. Catal. A, 2001,214, 111-120
    [18] Raja T., Singh A.P., Ramaswamy A.V., et al., Appl. Catal. A., 2001, 211, 31-39
    [19] Jaimol T., Moreau P., Finiels A., et al., Appl. Catal. A, 2001, 214, 1-10
    [20] Choudhary V.R., Jana S.K., Patil N.S., Catal. Lett., 2001, 76, 235-239
    [21] 毛萱,殷元骐,分子催化,2000,14,483-489
    [22] Nomiya K., Sugaya Y., Miwa M., Bull. Chem. Soc. Jpn., 1980, 53, 3389-3390
    [23] Keggin J.F., Nature, 1933, 909
    [24] Izumi Y., Natsume N., Takamine H., Tamaoki I., et al., Bull. Chem. Soc. Jpn., 1989, 62, 2159-2162
    [25] Izumi Y., Ogawa M., Nohara W., et al., Chem. Lett., 1992, 1987-1990
    [26] Izumi Y., Ogawa M., Urabe K., Appl. Catal. A, 1995, 132, 127-140
    
    
    [27] Tagawa T., Amemiya J., Goto S., Appl. Catal. A, 2004, 257, 19-23
    [28] 娈文楼,李路明著,膨润土的开发应用,北京:地质出版社,1998
    [29] Chiche B., Finiels A., Gauthier C., et al., J. Mol. Catal., 1987, 42,229-235
    [30] Choudhary V.R., Jana S.K., Mandale A.B., Catal. Lett., 2001, 74, 95-98
    [31] Lopez S.E., Garcia S.M., Ramon G.M.L., et al., J. Porous Mater., 1996, 3, 69
    [32] Choudary B.M., Sateesh M., Kantam M.L., et al., Catal. Lett., 2001, 76, 231-233
    [33] Choudary B.M., Reddy K.S., Kantam M.L., et al., U.S. Patent 6239302, May 29, 2001
    [34] Hino M., Arata K., Chem. Lett., 1989, 971-972
    [35] Jia C.G., Huang M.Y., Jiang Y.Y., Chin. J. Chem., 1993, 11(5), 452
    [36] Arata K., Nakamura H., Shouji M., Appl. Catal. A., 2000, 197, 213-219
    [37] 韩利民,王亚军,冶杰慧,等,内蒙古工业大学学报,2002,21(3),178-180
    [38] Trunschke A., Deutsch J., Müller D., et al., Catal. Lett., 2002, 83, 271-279
    [39] Deutsch J., Trunschke A., Müller D., et al., Catal. Lett., 2003, 88, 9-15
    [40] Olah G.A., Malhotra R., Narang S.C., et al., Synthesis, 1978, 672-673
    [41] Zhou D.Q., Zhang Y.H., Huang M.Y., Polym. Adv. Technol., 2002, 14, 360
    [42] Prakash G.K.S., Yah R, Trk B., et al., Catal. Lett., 2003, 85, 1-6
    [43] Hans H.L., Hart H., J. Org. Chem., 1959, 24, 280-281
    [44] Deyoung E.L.J. Org. Chem., 1961, 26, 1312
    [45] 赵壁英,马华容,唐有祺,催化学报,1995,16(3),177-182
    [46] Olah G.A., Prakash G.K.S., Sommer J., Superacid, Wiley-Interscience publication, New York, 1986, 14
    [47] Nakamoto K., Fujita J., Tanaka S., et al., J Am. Chem. Soc.,1957, 79, 4904
    [48] Parry E.P., J. Catal., 1963, 2, 371
    [49] 田部浩三,御园生诫,小野嘉夫,等,新固体酸和碱及其催化作用,化学工业出版社,1992,4
    [50] Farmer V.C., Russell J.D., Spectrochim. Acta., 1964, 20(7), 1149-1155
    [51] Risgin O., Taylor R.C., Spectrochim. Acta., 1959, 15, 1036

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700