热等离子体下行床反应器中颗粒流动特性的冷模试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热等离子体煤裂解制乙炔下行床反应器工艺的严重结焦是制约该过程稳定操作与连续运行的瓶颈。当采用适量惰性颗粒与原料粉煤一起通过下行床时,惰性颗粒在煤裂解过程中作为结焦前驱体的载体并不断地冲刷管壁可抑制并减缓反应器的结焦。于是,下行床中将出现二元组分颗粒系统(惰性颗粒与反应颗粒)混合流动的新问题;遗憾的是,迄今几乎所有下行床的报道都是关于单组分颗粒运动与气体混合的研究,因此系统地进行二元组分颗粒流动与混合特性、速度分布与预测、流型演变与发展等研究工作,对拓展下行床的工业应用与解决热等离子体煤热解反应器严重结焦瓶颈问题是非常重要而又十分急需的。
    本文采用PV-4A光导纤维测速仪在高2m、直径Φ30mm的半圆形下行床反应器中较系统地测定了FCC催化剂(模拟反应颗粒)及不同粒径玻璃珠(模拟惰性颗粒)在6个截面8个径向位置的局部颗粒速度的轴向及径向分布。同时测定与预测了试验颗粒的近似颗粒群沉降速度,进而与理论计算的颗粒群自由沉降速度进行了分析对比。接着考察了流动分区,确定了气固流在下行床中的运动状态。用4种不同物性粒子考察了颗粒物性对颗粒速度轴、径向分布的影响;研究了两种分配器(直管式与环隙式)及操作条件对不同物料局部颗粒速度径向分布的影响。根据本实验和文献中不同下行床结构特征与不同物料体系的实验数据,综合地得出具有一定普适性的无因次局部颗粒速度经验关联式。最后将FCC催化剂和玻璃珠物料同时进入下行床中,考察了不同混合比组成的二元混合组分的颗粒速度径向分布特点。本冷模实验得出以下重要结论:
    (1)颗粒群自由沉降速度的实验值与理论计算值具有相似的规律,随粒径与密度的增加而逐渐增加,在很低气速时测定的局部颗粒速度及截面平均速度可表示该颗粒群的近似自由沉降速度(即:近似颗粒群沉降速度)。
    (2)在不同运动阶段时,颗粒速度径向分布相差较大,在第一加速段,分布波动较大,更加陡峭,而在第二加速段及恒速段则趋于稳定,速度分布较均匀。颗粒物性是引起颗粒速度径向分布变化的主要因素,在相同操作条件下密度愈大,粒径愈大的粒子径向分布愈易均匀。
    (3)局部衰减颗粒速度值反映了颗粒速度径向分布的均匀程度,采用高
    
    
    径比H/D、无因次局部颗粒速度vp*、雷诺数Re0、曳力系数Cds及无因次截面平均颗粒速度的关联式,并包括了不同物料颗粒群沉降速度的修正,可用来预测出表观气速及固体循环速率以及颗粒物性对颗粒速度径向分布的影响,该无因次局部颗粒速度关联式适用于不同结构特征及不同物性参数物料体系,具有一定的普适性。
    (4)从均匀布气与混合均匀入手设计的环隙式分配器,通过两个不同缝隙使粗、细两种颗粒在分配器中分别得以均匀分配与固体循环量的灵活控制,使细颗粒的局部速度径向分布更为均匀,同时在整个截面的速度相差不大,能有效地在等离子高温反应区进行快速反应;而粗颗粒在下行床管壁附近速度相对増大,能更好地冲刷管壁结焦物,有利于抑制结焦与热等离子体煤裂解制乙炔的生产过程。
    (5)惰性粒子粒径不同,其清焦的效果并不相同;二元组分混合颗粒速度径向分布较单一组分趋于均匀,其中粗颗粒粒径愈大,颗粒速度径向分布愈均匀,该混合组分速度分布可用来进行加和;二元混合组分的固体循环量比值M*对颗粒速度径向分布的影响不大,从满足实际生产需求与提高生产能力出发,M*值应控制在10%以下。
The key problem of coking seriously restricts the stable and continuous operation in thermal plasma downer reactor for the coal cracking process to produce acetylene production. When injecting appropriate amount of inertia particles and coal into downer, the problem of coking could be prohibited or alleviated since the inert particles can carry the coking precursor of coal and also will continually scour the downer wall to draw the coking matter off. However, a binary particle mixture system composed of inert and reaction particles will occur in downer and cause some changes in flow behavior, which become a new unclear problem. Unfortunately almost the past studies were focused mostly on single particle and gas mixing flow behavior in downers. Therefore in order to expand the industrial application scope of downer and resolve the coking problem for the process of acetylene production from coal cracking in thermal plasma downer, It is necessary to have a special and systematic study on the solid flow behavior, redial and axial distributions of local particle velocity and flow development along the downer for the binary particle mixture system.
    The axial and radial distributions of the local particle velocity at different radial positions on various axial levels along a downer were systematically measured by using a PV-4A fiber-optic particle velocity probe in a half-column downer of 2m-height and Φ30 mm I.D. The approximate particles settling velocities were measured and predicted, and also compared with theoretically calculated ones. Then the flow regions in downer were determined and the flow patterns of gas and solids were examined. Four kinds of solid materials with different physical properties were used to study the effects of particle properties on the axial and radial distributions of the local particle velocity. And the influences of distributor geometry configuration, dealing with both orthogonal tube and annular styles, and operation conditions on radial distributions of the local particle velocity were also investigated in this paper. Based on the concept of dimensionless local particle velocity, a new correlations for predicting the local particle velocity distribution was developed by regressing experimental data from different geometrical downers
    
    
    and different material systems in both present work and literatures, which can be used in a relatively wider range. Finally, the radial distributions of binary mixture particle velocity,formed by respectively and simultaneously injecting fine-FCC catalysts and coarse-glass beads in downers,were examined at different composition ratios of FCC catalysts to glass beads. The main results are shown as below:
    (1) The approximate particles settling velocities determined by experiments appear in the similar variation rule as the calculated ones, i.e. these velocities are increased with the increasing of particle sizes; In this study, the local particle and mean particle velocities, measured at very low gas flow-rate, can be taken as the approximate particles settling velocities.
    (2) The gas and solids flow development in downer and the radial distributions of local particle velocity are varied significantly with the physical properties of particle. In the first acceleration region, the radial distributions of local particle velocity fluctuate more often and are more steeped, while in the second acceleration region they are more stable and uniform. The key factor for the great change of radial distributions of local particle velocity is the particle properties, and at the same operation conditions, the large the particle size and the high the particle density, the more even the radial distributions of local particle velocity.
    (3) The reduced particle velocity () can reflect the even level of the radial distributions of local particle velocity. Five dimensionless numbers, standing for the bed geometrical characteristics, physical properties of particle, and others, i.e., H/D、vp*、Re0、Cds and were employed to develop a new correlation for predicting the
引文
[1] 陈宏刚, 张旭斌, 张永发,等. 煤等离子体热解法制乙炔的工艺技术现状及进展.煤炭转化,1996,19(2):19-23.
    [2] Bond R L, Galbraith I F, Lander W R.Production of acetylene from coal using a plasma jet.Nature,1963,200:1313-1314.
    [3] Bond R L, Lander W R, McConnell G I T.Reaction of coal in a plasma jet.Fuel,1966,45:381-395.
    [4] 田亚峻.煤在电弧等离子体射流中的反应过程研究:[博士学位论文].山西:太原理工大学,2001.
    [5] 张济宇.热等离子体下行循环反应器的开发与研究.一碳化学与化工国家重点实验室开放基金申请书,2001.
    [6] 祝媛,张济宇,谢克昌.热等离子体裂解煤制乙炔下行反应器的研究进展.化学工业与工程技术,2004,25:30-36.
    [7] 祁春鸣,俞芷青,金涌.气固并流下行快速流化态的研究(Ⅰ).化工学报,1990,3:273-280.
    [8] Zhang H, Zhu J X.Hydrodynamics in downflow fluidized Beds (2):particle velocity and solid flux profiles.Chem. Eng. Sci., 2000,55:4367-4377.
    [9] Cao C S,Jin Y,Yu Z Q,Wang Z W.The gas-solids velocity profiles and slip phenomenon in a concurrent downflow circulating fluidized bed.In:Circulating Fluidised Bed Technology Ⅳ A A Avidan.AICHE.New York.pp.1994,406-413.
    [10] 周如金,魏飞,金涌.气固顺逆重力场流态化特征分析.化学工业与工程,2001,18:182-186.
    [11] 杨国强,魏飞,汪展文,金涌.LDV测试技术在测量稀相气固并流上行和下行循环流化床两相速度中的应用.流体力学实验与测量,1997,11:35-42.
    [12] Zhang H,Zhu J X,Maurice A.Flow development in a gas-solid downer fluidized bed.The Canadian Journal of Chemical Engineering,1999,77:194-198.
    [13] 张明辉,钱震,余皓,魏飞,金涌.大型循环流化床流动结构分析.化工学报,2003,54:182-187.
    [14] Liu W, Luo K B,Zhu J X,Beeckmans J M.Characterization of high-density gas-solids downward fluidized flow.Powder Technology.2001,115:27-35.
    [15] Lehner P,Wirth K E.Characterization of the flow pattern in a downer reactor.Chemical Engineering Science.1999,54:5471-5483.
    [16] 金涌,祝京旭,汪展文,余芷青主编.流态化工程原理,第五章,气固顺重力场流态化.北京:清华大学出版社,2001.217-282.
    [17] 邱介山.等离子体在煤化工中的应用.煤炭转化,1995,18(2):26-31 .
    [18] Chakravartty S C, Dutta D, Lahiri A.Reaction of coals under plasma conditions:direct production of acetylene from coal.Fuel.1976,55:43-46.
    [19] Baumann H, Bitter D.Pyrolysis of coal in hydrogen and helium plasma.Fuel.1988, 67:1012-1016.
    
    [20] Honda T, Kanzawa A, Anekawa H..Gasification of coal in the thermal argon plasma [J].Chem Eng Japan, 1985,18(5):414-419.
    [21] Gartside R J, Ellis A F. Thermal regenerative cracker:a development update, Chem. Eng. Prog.,1983,79(3):82-85.
    [22] Chakravartty S C, Dixit L P. Theoretical maximal yield of acetylene from coal by plasma pyrolysis. Fuel Process Technology,1982.6:85-90.
    [23] 魏飞,金涌,俞芷青.新一代催化裂化装置的开发——气固超短接触催化裂化过程.油气加工,1994,4(1):26-30.
    [24] Maadhah A G,Mohammed A H,et al.Down-flowing FCC reactor. Oil and Gas J.2000,98:66-78.
    [25] Murphy J R.Evolutionary design changes mark FCC process.Oil and Gas J,1992,18:49-58.
    [26] Bassi A B,Briens C L,Bergougnou M A.Short Contact Time Fluidized Reactors.In:Avidian A A ed, Circulation Fluidized Bed Technology .New York:AICHE,1994.15-19.
    [27] Berg D A,Briens C L,Bergougnou M A.Reactor development for the ultrapyrolysis reactor. Can. J.Chem.Eng.,1989, 67:96-101.
    [28] Rodden G. The new alchemy: turning waste into oil and chemicals. Chemical News,1993,45:33-37.
    [29] Berg D A,Briens C L,Meunier B A,et al.Rapid mixing studies between transported solids in an urtra-rapid fluidized reactor.Proc.10th Annual Powder Solids Conf..Rosemont: 1986, 553-558.
    [30] Ago H,Ohshima S,Uchida K,et al.Carbon nanotube synthesis using colloidal solution of metal nanoparticles. In: Symposium on Carbon Nanotube in Commemoration of the 10th Anniversary of its Discovery.Tsukuba:2001. 110-143.
    [31] 姚百胜,罗保林.并流下行式循环流化床研究进展.化工冶金,1998,19(3):282-287.
    [32] 陈丙瑜,等.气固顺流下行流化床反应器入口结构的实验研究.化工冶金,1992,13(1 ):45- 50.
    [33] 杨艳辉,邓任生,魏飞,金涌. 气固并流下行床反应器出入口结构研究现状与展望.过程工程学报,2001,1(1):106- 112.
    [34] 刘金忠.气固并流下行床入口段颗粒局部浓度分布及混合行为研究.[硕士学位论文].北京:清华大学,1995.
    [35] Johnson P M,de Lasa H I,Zhu J.Axial flow structure in the entrance region of a downer fluidized bed: effect of the distributor design.Chem. Eng. Sci.,1990, 54(13) :2161-2173.
    [36] 祁春鸣,金涌,俞芷青,等. 气-固并流下行惯性分离装置的研究. 石油炼制, 1 989,12:51- 56.
    [37] 杨艳辉,钱震,余皓,魏飞,金涌. 用于气固并流下行式反应器中的新型气固相分离装置.石油炼制与化工,2000,31(12),24-26.
    [38] Kim J M. et al. Pressure drop for cocurrent downflow of gas-solids suspensions. AICHE. 1983,29(3):353-360
    [39] 杨勇林. 循环流化床内气固并流上行和下行运动规律的研究. 清华大学博士论文 1991
    
    [40] Yang Y L, Jing Y, Yu Z Q. et al. The radial distributor of local particle velocity in a dilute circulating fluidized bed. In P. Basu, M. Horio, Circulating fluidized bed technologyⅢ.1991,201-206
    [41] Wang Z, Bai D et al. Hydrodynamics of cocurrent downflow circulating fluidized bed (CDCFB). Powder Technology. 1992,70:71-275
    [42] Herbert P M, Gauthier T A, Briens C L et al. Application of fiber optic reflection probes to the measurement of local particle velocity and concentration in gas-solid flow. Powder Technology.1994,80:201-206
    [43] Lehner P,Wirth K E.Effect of gas-solids distributor on the local and overall solids distribution in a downer reactor.Can. J. Chem.Eng.1999,77(2):199-206.
    [44] 魏飞,等.气固并流下行床气体扩散行为的研究.化工学报,1994,45(4):429-434.
    [45] 罗保林,晏东.并流下行循环流化床反应器中的气固传质特性.化工冶金,1997,18(3):221-228.
    [46] Ma Y,Zhu J X.Experimental study of heat transtfer in a co-current downflow fluidized bed(Downer).Chem. Eng. Sci.,1999,54, 41-50.
    [47] 冯伟,刘翠云, 崔元臣.并流下行循环流化床反应器的气固传热模型.河南大学学报,2001,32(3):29-32.
    [48] 周如金,魏飞.超短接触反应器基础研究与应用展望.石化技术,2000,7(2):109-111.
    [49] 祝京旭,魏飞, 杨勇林.气固下行流化床反应器Ⅰ下行管反应器的发展及其应用.化学反应工程与工艺,1996,12(2):214-224.
    [50] 祝京旭,魏飞.气固下行流化床反应器Ⅱ气固两相的流动规律.化学反应工程与工艺, 1996,31(2):59-64.
    [51] 祝京旭.气固下行循环流化床反应器.化学反应工程与工艺,1996,12 (2 ):214-224.
    [52] 刘会娥,杨艳辉,魏飞,金涌.逆向气体射流对下行床颗粒混合的影响.高校化学工程学报,2002,3(6):297-301.
    [53] 曹春社,金涌,俞芷青,等.并流下行快速流化床内气-固运动速度及滑落速度的研究,第六届全国流态化会议论文集,武汉:1993.87-91.
    [54] 陈丙瑜,夏麟培.顺流下行气固两相系统流体力学特性研究.化工冶金,1993,14(3):252-259.
    [55] 罗国华,杨贵林.循环流化床中气体轴向混合行为研究.北京:第五届全国流态化会议论文集,1990.159-164.
    [56] 莫伟坚.并流下行式中型装置中大庆常压渣油催化裂化初期的过程动力学研究:[博士学位论文].北京:石油大学
    [57] 魏飞,金涌,俞芷青,等.循环流化床中颗粒磷光示踪技术.化工学报,1994,45:231-235.
    [58] 魏飞,金涌,俞芷青,等.气固并流下行循环流化床中气体混合行为的研究.化工学报,1994,45:429-434.
    [59] Yang Y L,Jin Y, Yu Z Q,Zhu J X,et al.Local slip behaviour in the circulating fluidized bed.AICHE Symp. Ser.,1993,89(296):81-90.
    [60] 杨勇林,金涌,俞芷青,等.气固并流下行系统中两相流体力学行为的研究.石油化工,1991,20:765-770.
    
    [61] 程易,林仟,魏飞,等.下行床入口段局部颗粒速度及质量流率径向分布的研究.第八届全国化学工程年会,天津:1996.224-228.
    [62] 程易,林仟,魏飞,等.下行床入口段颗粒浓度发展的研究.第八届全国化学工程年会,天津:1996.229-234.
    [63] Bai D R,Jin Y,Yu Z Q,et al.Gas-solids flow patterns in a co-current downflow fast fluidized bed(CDCFB).J Chem. Ind. Eng. China,1991,6:171-181.
    [64] Cao C S, Weinstein H.Characterization of downflowing high velocity fluidized beds.AICHE J.,2000, 46:515-522.
    [65] Schiewe T, Wirth K E, Molerus O, et al.Measurements of solids fraction in a downward vertical gas-solids flow. AICHE J,1999,45:949-955.
    [66] Ball J S, Zhu J.Comparison of solids fluxes in a pair of downer and riser reactors.Chem. Eng. Tech,2000,23:701-705.
    [67] 魏飞,祝京旭.气固下行流化床反应器Ⅲ气固混合.化学反应工程与工艺,1996,12(4):429-437.
    [68] 祁春鸣,俞芷青,金涌,等.气固并流下行快速流化态的研究(Ⅱ).化工学报,1990,3:281-290.
    [69] 山西维尼龙厂试车报告,1998
    [70] 田原宇,黄伟,等.煤等离子体热解制乙炔工艺的工程探讨.现代化工,2002,22(2):7-10.
    [71] 吕永康,田原宇,等.粒径对煤在H2/Ar等离子体中热解的影响.燃料化学学报,2002,30(3):229-233.
    [72] 孔春林.循环流化床提升管中颗粒浓度和速度的实验研究:[硕士学位论文].四川:四川大学.
    [73] 卢春喜,王祝安.催化裂化流态化技术,第一章,流态化基本原理.北京:中国石化出版社,2002.1-3.
    [74] 谭天恩,麦本熙,丁惠华.化工程原理,第三章,机械分离.北京:化学工业出版社,1996. 128-131.
    [75] 张济宇,蔡本权.立管固气稀相输送适宜气速的选择.化学工程,1974,5:1-25.
    [75] 周如金.浅谈重力场对气固流态化的影响.广东石油化工高等专科学报.1997,7(2):36-40.
    [76] 孙国刚,李静海.粒径分布对循环床内颗粒速度分布的影响.粉体技术,1998,3:1-5.
    [77] 赵承庆,姜毅.气体射流动力学.北京:北京理工大学出版社,1998.
    [78] 魏飞,刘金忠,金涌.下行床入口段流体力学及混合行为.化工学报,1998,49(1):28-38.