超高速平面磨床的构造特征及动态特性研究与结构优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高速磨削对提高生产效率、降低加工表面质量有显著效果,是当前磨削技术的发展趋势。开发和研制性能优良的超高速磨床是发展超高速磨削加工的首要条件。
     本文阐述了国内外高速加工、尤其是超高速磨削技术的发展状况和目前设计开发高速机床采用的先进方法。并探讨了超高速磨床区别于普通磨床的构造特征、开发设计超高速平面磨床的技术路线、其结构的性能要求和其高刚度支撑结构的设计要点。在此基础上,提出了提高磨床动态特性的三种方法。
     用有限元法研究机床整机的动态性能是当前优化并改进机床结构、设计开发机床新产品的现代设计方法,而超高速磨削的高速性和更高的动态性能要求更需要如此。本文重点以150m/s超高速平面磨床为研究对象,建立其整机的有限元模型,并进行模态分析,得到前几阶的固有频率和振型。从提高整机的抗振性能出发,根据计算结果,分析得到改进床身结构可改善整机的动态性能,并提出了床身的改进方案,并研究了结合部参数对整机性能的影响。
     本文还以提高床身和立柱的刚度为目标,分析它们不同结构对其动力特性的影响。通过研究指出床身可通过减少开窗的数目以及封闭其中纵向的筋板,立柱可通过加翼的方法来改善其动力特性。这些结论为超高速平面磨床结构的优化设计提供了可靠的依据。
The ultra high-speed grinding is the current trend in grinding owing to its higher productive efficiency and lower surface roughness. Designing the ultra high-speed grinder of good performance is a principal condition.
    In this paper, the development of HSM technology at home and abroad, especially of the ultra high-speed grinding and the advanced methods for designing high-speed grinder are introduced, as well as the structural characteristic of the ultra speed-high speed grinder which is quiet different from the conventional ones, the technical line for developing the high-speed surface grinder, the structural performance requirement and some points designing its based structure of high rigidity. What's more, three methods to improve the dynamic behavior of the grinder are presented.
    In the current state of the art, calculation of static and dynamic behaviour of machine tools requires the modeling of the complete structure and components by the Finite Element Method. It is a good way to improve and optimize the machine tool's structure and develop new products, which is badly needed for developing ultra high-speed grinder because of its high speed and higher dynamic behaviour requirement. The ultra high-speed surface grinder which running at 150m/s is our research object. Firstly, its Finite Element Model of the complete machine is created, mode analysis is carried out, and then its several lowest natural frequencies and modeshapes are obtained. Secondly, for improving its vibration resistance ability, the bed structure must be improved according to the calculation results. Hence the improvement project of bed is put forward. In addition, the effect of the joint's parameters on the grinder's dynamics behavior is also involved in this paper.
    Aimed at the rigidity improvement of the bed and column, the effects of different structures are analyzed .By studies, it is indicated that better dynamic behavior can be obtained by reducing the number of windows and closing the lengthways ribs for bed and adding wings for column respectively. All these conclusions offer reliable foundations for the optimization design of structures of the ultra high-speed surface grinder.
引文
[1] 张伯霖.高速切削技术及应用.北京:机械工业出版社,2002
    [2] Robert I. King. Handbook of hign-speed machining technology. New York: Chapman and hall,1985,1-16
    [3] 艾兴.高速切削加工技术.北京:国防工业出版社,2003
    [4] S. Smith, J. Tlusty. Current Trends in High-Speed Machining. Transactions of the ASME, 1997,119(10),664-666
    [5] 宋贵高,巩亚东,蔡光起.超高速磨削及应用.航空精密制造技术,2000,36(3):16-20
    [6] 赵恒华,冯宝富,高贯斌等.超高速磨削技术在机械制造领域中的应用.东北大学学报(自然科学版),2003,24(6):565-568
    [7] F. Klocke, E. Brinksmeier, C. Evans, et al. High-speed grinding—fundamentals and state of the art in Europe, Japan, and the USA. Annals of CIRP, 1997,46(2):715-724
    [8] 陆名彰,熊万里,黄红武等.超高速磨削技术的发展及其主要相关技术.湖南大学学报(自然科学版),2002,29(5):44-48
    [9] 高速切削与高速磨削.http://www.china-machine.com/adv_technology/technics_tec/technics_item122_12.htm,2004-4-6
    [10] 蔡光起,磨削技术现状与新发展.制造技术与机床,2000,5:10-11
    [11] 周志雄,邓朝晖,陈根余等.磨削技术的发展及关键技术.中国机械工程,2000,11(1-2):186-189
    [12] 张维纪.金属切削原理及刀具.杭州:浙江大学出版社,2002,101-102
    [13] 杨橚,唐恒龄,廖伯瑜.机床动力学(Ⅰ).北京:机械工业出版社,1983
    [14] 杨橚,唐恒龄,廖伯瑜.机床动力学(Ⅱ).北京:机械工业出版社,1983
    [15] 杜奕.MSY7115平面磨床的实验模态分析及动特性修改.[昆明理工大学硕士学位论文],2002:
    [16] 陈文锋,毛汉领,雷力生等.MXBS-1320型高速外圆磨床动态性能的试验研究.广西机械,1997(2):39-43
    [17] 陈新,何杰,毛海军等.基于动力学特征的磨床床身结构优化布局设计.制造技术与机床,2001,(2):21-23
    [18] 李晓燕,钱炜,韩红俊.平面磨床床身的三维有限元分析.机械设计与制造工程,2002,31(2):26-28
    
    
    [19] 覃文洁,左正兴,刘玉桐等.机床整机的动态特性分析.机械设计,2000(10):24-26
    [20] 张广鹏,史文浩,黄玉美等.机床整机动态特性的预测解析建模方法.上海交通大学学报,2001,35(12):1834-1837
    [21] G.P. Zhang, Y.M. Huang, W.H. Shi, et al. Predicting dynamic behaviours of a whole machine tool structure based on computer-aided engineering, International Journal of Machine Tools& Manufacture, 2003,43:699-706
    [22] 周德廉,陈新,孙庆鸿.高精度内圆磨床整机动力学建模及优化设计.东南大学学报(自然科学版),2001,31(2):35-38
    [23] 陈新.高精度内圆磨床结构动力学建模与优化设计研究:[东南大学博士论文].南京:东南大学,2001,43-54
    [24] 廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用.北京:机械工业出版社,2003
    [25] 陈卫福,孙建光,范晋伟等.模态力法用于机床结构系统动态分析的研究.北京工业大学学报,2000,26(1):53-57
    [26] 陈卫福,黄旭东.先进的机床设计方法“模态力法”.计算机辅助设计与制造,2000,(5):85-86
    [27] 刑统坤,马春敏,陈卫福.复线性方程求解问题的研究——用模态力法分析高速机床主结构.北京工业大学学报,2000,26(12):9-14
    [28] 赵宏林,张文河,盛伯浩等.机床整机综合特性的预测.制造技术与机床,1998,(3):12-14
    [29] M. Zatarain, E. lejardi, F. Egana. Modular synthesis of machine tools. Annals of the CIRP, 1998,47(1): 333-336
    [30] Jung Do Suh, Seung Hwan Chang, Dai Gil Lee, et al. Damping characteristics of composite hybrid spindle covers for high speed machine tools. Journal of Materials Processing Technology, 2001, 113:178-183
    [31] 栾景美,黄红武,熊万里.超高速电主轴结构综述.精密制造与自动化
    [32] 黄红武,熊万里等.高速大功率精密电主轴中的关键技术.湖南大学学报(自然科学版),2002,29(5):49-54
    [33] J. D. Suh, D. G. Lee. Composite machine tool structures for high Speed milling machines. Annals of the CIRP, 2002,51(1): 285-288
    [34] 张曙,U.Heisel.并联运动机床.北京:机械工业出版社,2003
    [35] Dr. stuart C. Salmon. Modern grinding process technology. New York:
    
    McGraw-Hill, Inc. 1992,103-119
    [36] T.L. Schmitz, M.A. Davies, K. Medicus, et al. Improving high-speed machining material removal rates by rapid dynamic analysis. Annals of the CIRP, 2001,50(1):263-268
    [37] T.L. Schmitz. Predicting high-speed machining dynamics by substructure anlysis, Annals of the CIRP, 2000,49(1): 303-308
    [38] 郜业猛,杨正新,于世江等.直线电机在数控机床进给系统中应用现状与趋势.合肥工业大学学报(自然科学版),2002,25(5)
    [39] 冯宝富,蔡光起,邱长伍.超高速磨削的发展及关键技术.机械工程师,2002,(1):5-9
    [40] 唐京、余大伟.提高发动机部件精磨质量的新技术——美国SBS“砂轮在线动平衡系统”.制造技术与机床,1995,(1):55
    [41] 潘纪根.美国SBS全自动砂轮在线动平衡系统在轧辊磨床上的应用.磨床与磨削,1997,(1):12
    [42] Schmitt Industries, Inc. Operations Manual for the SBS Dynamic Balance System.
    [43] 张广鹏,黄玉美,赵宏林等.一种机床动态特性的模糊评价方法.制造技术与机床,2001,(1):14-16
    [44] U. Heisel, M. Gringel. Machine tool design requirements for high-speed machine. Annals of the CIRP, 1996,45(1): 380-392
    [45] 陈荣源.浅谈国外高速加工中心的发展.组合机床与自动化加工技术,1999(3):5-7
    [46] 姚峻.联邦德国厄尔勃公司的平面磨床.磨床与磨削,1998,(1):14-16
    [47] Matthias Hebsacker,孙季初译.用六条腿机床实现高效铣削.制造技术与机床,1998,(10):20-22
    [48] 张杰.复杂机械结构结合面动力学建模及其参数识别方法的研究.机械强度,1996,18(2):1-5
    [49] 杨家华,陈为福,黄旭东等.机床床身立柱结合面参数识别的研究.北京工业大学学报,1999,25(1):44-49
    [50] 张宇,廖伯瑜.机床结合部参数的有效识别方法.昆明理工大学学报,1998,23(2):36-40
    [51] 濮良贵,纪名刚.机械设计.北京:高等教育出版社,1999,65-66
    [52] 伊东谊.现代机床基础技术.北京:机械工业出版社,1987,125
    [53] 胡如夫,孙庆鸿,陈南等.高精度内圆磨床结构动态优化设计研究.中国机械工程,2002,13(18):1542-1544