用户名: 密码: 验证码:
蛭石在生活污水处理工艺中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人们在污水处理廉价高效填料的应用上作了大量的研究。蛭石作为粘土矿物的一种,具有独特的层状结构而表现出良好的吸附和离子交换性能,在污水处理中有广阔的应用前景。本文就其应用于实际工艺进行了理论研究及实际工艺应用。实验结果如下:
     (1)在理论方面,研究了吸附时间、共存阳离子、投加量及粒径对蛭石吸附氨氮的影响。结果表明蛭石对氨氮吸附速度快,在吸附开始半小时氨氮吸附量可达到平衡时的60%;溶液中的共存阳离子对蛭石吸附氨氮具有很大的影响,影响的强弱顺序为Mg~(2+)>ca~(2+)>K~+>Na~+;通过分析比较,得出在实际工艺应用中,采用lg:100mL的投加量比例及小粒径的蛭石较为合适。
     (2)试验进行了蛭石-SBR与常规SBR去除污染物的性能比较,结果表明蛭石填料不仅具备一般生物载体的特点,还能进一步选择性地富集硝化细菌,通过生物方式实现吸附再生平衡,有效地提高反应体系的硝化性能,氨氮去除率比对照组高出20~30%。硝化菌附着在填料表面,其泥龄较长,不易流失。反应系统在填料的流化下,提高了系统的传质性能,故对有机物的去除效果高于SBR,蛭石-SBR比一般SBR系统高出5%。
     (3)在蛭石-SBR系统运行的诸多影响因素中,温度对COD_(Cr)的去除没有很大的影响,蛭石-SBR对温度的适应性比常规SBR强;在温度适宜时,pH是制约硝化的重要因素,通过在反应过程中调节pH可以达到很高的NH_4~+-N去除率;其它条件一定下,15L/h时是系统适宜的曝气量,分析原因,是因为过大的曝气量破坏活性污泥絮体结构,会降低COD_(Cr)的去除效果,而15L/h的曝气量已足够硝化过程对溶解氧需求,增大曝气量来提高溶解氧浓度不经济。
     (4)蛭石应用于一级生物强化处理中,蛭石填料对有机物去除没有明显效果,但可以增加系统对氨氮去除能力,与对照组相比,高出30%多;吸附饱和后的蛭石,在活性污泥再生过程中,通过活性污泥的降解有机物,可去除较大部分的氨氮。通过实验,得出活性污泥吸附去除COD_(Cr)的合适吸附时间为30min,吸附饱和污泥再生时间为2h。
     本文创新地提出了在SBR工艺及强化一级生物处理中应用蛭石填料,并通过对比,得出应用蛭石填料后,可增加反应系统去除氨氮性能,并初步分析了各因素对处理效果的影响,其中研究方法与初步结论对于同类研究和生产实践均具有一定的参考价值。
These years, the appliance of cheapness and high effect fillings to wastewater treatment has been investigated a lot. Vermiculite is one of soil minerals, and possesses better adsorption and ion exchange capacity for its sandwich structure, so exhibit wider application prospect in domestic sewage treatment. This paper study the possibility of vermiculite's appliance to crafts, and reach the practice reactor applying. The test results were manifested as follows:
    (1) During theory research, the effect of time, coexisting cations on the absorption of ammonia-nitrogen onto the vermiculite were studied, while the effects of vermiculite amount and particle size were discussed respectively. The tests show that the rate of vermiculite absorb ammonia-nitrogen is fast, and the adsorption' amount of ammonia-nitrogen in 30min may reach 60% compared with the amount in balance; coexisting cations have rather big impact on the adsorptive action, the sequence is as follows: Mg2+ > Ca2+ > K+ > Na+; by analysis, when apply to craft, the suitable solid/liquid is l:100(g/mL) and small particle size are better than big.
    (2) The characteristics of contaminated material removal were investment on vermiculite-SBR and SBR. The experimental results indicated that the vermiculite filling can accumulate nitrifiers, and by the nitrifiers' transformation, vermiculites accomplish the performance of adsorption. Compared with common SBR, vermiculite-SBR can increase NH4+-N removal efficiency by more than 20~30%. Nitrifiers may grow in the surface of vermiculites, though the grow rate of nitrifiers is slow , it can accumulate in the reactors. As the filling moves, the reactor has enhance the ability to transfer the materials and oxygen, and so CODCr removal efficiency increase by more than 5%.
    (3) Among many factors that impact system .temperature has little effect on the removal of CODCr, Compared with common SBR, vermiculite-SBR has better capacity of resisting the low temperature; when temperature is suitable, pH is an important factor that constraint the rate of nitrification. By regulating the pH during the process of treatment, the system may reach hige NH4+-N removal efficiency. When other factors are finable, 15L/h is the suitable amount of aeration.By analysis, the excessive aeration amount will destroy the capacity of sludge, and so decrease the removal efficiency of CODCr,and the 15L/h aeration amount is enouge for the demand of nitrification.
    (4) The vermiculite apply to the system of intensified bio-flocculation and adsorption primary treatment technology was also study in this paper. Compared with normal treatment system, vermiculite system can not increase CODCr removal efficiency, but can increase greatly NH4+-N removal efficiency by more than 30% The suitable adsorption time of activated sludge removal CODCr by adsorption and the time of renew the activated sludge were studied respectively.
    
    
    
    This paper put forward innovatively to add vermiculite to SBR and the system of intensified bio-flocculation and adsorption primary treatment, and compared with common system, draw the conclusion that applying the vermiculite fillings to treatment systems could increase the capacity of system removal contaminating materials.
引文
[1] 刘文祥,耿世刚等.水资源危机——21世纪全球热点资源环境问题[M].贵阳:贵州科技出版社,2001
    [2] 国家环保总局.2001中国环境状况公报
    [3] 国舫编.中国环境问题院士谈[M].北京:中围纺织出版社,2001
    [4] 汪大晖,雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社,2001
    [5] 刘培桐.环境学概论[M].北京:高等教育出版社,1995
    [6] 李典友·水体富营养化污染的生物防治对策及效益分析[J]·生物学杂志:2000,17(6),35~37
    [7] 陈坚.环境生物技术[M].北京:中国轻工业出版社,1999
    [8] 高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,1999
    [9] 吴剑,齐鄂荣,程晓如.废水生物脱氮技术的研究发展[J].武汉人学学报(工学版),2002,35(1):76~79·
    [10] 常望霓,杨华南.城市污水脱氮除磷方法探讨[J].环境保护,2000,(11):19~20
    [11] 王宗平,陶涛,金儒霖.污水生物脱氮研究进展[J].环境科学进展,1999,Suppl:124~129
    [12] 俞辉群等译.水和废水技术研究[M].北京:中国建筑工业出版社,1992.457—485
    [13] 黄翔峰,李春鞠,陈树斌.城市污水生物脱氮除磷技术的发展[J].中国沼气,2000,18(4):9~15
    [14] 袁国文等译.水与废水技术研究[M].北京:中国建筑T业出版社,1992.486—520
    [15] Siebritz I Petal. A Parametric Model for Biological Excess Phosphorus Removal[J].Water Sci.Tech.,1983,15(3/4): 17
    [16] Qasim S Retal.Effect of Biodegradable Carbon on biological Phosphorus Removal[J].Environ.Eng., 1996,(9):875
    [17] P.Sorm et al.Phosphorus Uptake under Anoxic Condition and Fixed Film Nitrification in Nutrient Removal Activated Sludge System[J].Wat,Res., 1996,30(7):1573~1584.
    [18] T.Kuda et al.Phosphorus and Nitrogen Removal with Minimal COD Requirement by Integration of denitrifying Dephosphatation and Nitrification in A Two Sludge System[J].Wat.Res., 1996,30(7): 1702~1710
    [19] George A Ekama et al.Difficulties and Developments in Biological Nutrient Removal Technology and Modelling[J].Wat.Sci.Tech., 1999,39(6):1~11
    [20] John Fillos et al. Full-scale Evaluation of Biological Nitrogen Removal in the Step-feed Activated Sludge Process[J].Water Environ.Res., 1996,68(2): 132
    [21] Coen F etal.Nitrogen Upgrade of a Wastewater Treatment Plant with in Existing Reacter Volumes:a Simulation Supported Scenario Analysis[J].Water Sci.Tech., 1996,34(3/4):339
    [22] 龚云华.污水生物脱氮除磷技术的现状与发展[J].环境保护,2000,(7):23~25
    [23] 高景峰,彭永臻,王淑莹等.以DO、ORP、pH摔制SBR泫的脱氮过程[J].中国给水排水,2001,17(4):6~11
    [24] 高景峰,澎永臻,王淑莹.SBR法反硝化模糊控制参数pH和ORP的变化规律[J].环境科学,2002,23
    
    (1): 39~44
    [25] Wouters-Wasiak K et al. Real-time Control of Nitrogen Removal at Full-Scale Using Oxidation Reduction Potential[J]. Water Sci.Tech., 1994,30(4):207
    [26] Bjorn Rusten et al. Nitrogen Removal from Dilute Wastewater in Cold Climate Using Moving-Bed Biofilm Reactors[J].Water Environ.Res., 1995,67(1):65
    [27] 周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11~18
    [28] Voets J. P. et al.,Removal of nitrogen from highly nitrogeneous wastewater.JWPCF,1975,47:394~398
    [29] Suthherson S.,Ganczarczyk J. J..Inhibition of nitrite oxidation during nitrification:some observations[J].Wat.Poll.Res.J.can., 1986,21:257~266
    [30] Turk O., Mavinic D.S.. Preliminary assessment of a shortcut in nitrogen removal from wastewater.Can.J.Civ.Eng., 1986,13:600~605
    [31] 耿艳楼,钱易,顾夏声.简捷硝化-反硝化过程处理焦化废水的研究[J].环境科学,1993,14(3):2~6
    [32] 周少奇,方汉平.低COD/N-NH_4~+比废水的同时硝化反硝化生物处理策略[J].环境污染与防治,2000,22(1):18~21
    [33] Zhou Shaoqi, Fang Hanping. Simultaneous nitrification and denitrification of high ammonia organic wastewaters treatment.In:CD-R of 1999 Asian Industrial Technology Congress. April 1999, HongKong, ET-E3-3
    [34] Jetten M.S.M et al.Towards a more sustainable municipal wastewater treatment system[J]. Water Sci.Tech., 1997,35(9): 171~180
    [35] Hellinga C,Van Loosdrecht M MC,Heijnen J J,Proceedings of the IMACS 2nd Mathmod Symposium, TU Vienna Austria, 1997,865~870
    [36] 冯叶成,王建龙,钱易.生物脱氮新工艺研究进展[J].微生物学通报,2001,28(4):88~91
    [37] Krul J M J. Appl. Bacteriol., 1976,40:245~260
    [38] Me8iberg J B M. J.Gen.Microbiol.,1980,120:453~463
    [39] Patureau D,Bernet N,Moletta R.J. Ind. Microbiol., 1995,16:124~128
    [40] Gupla S.K.,Raja S.M.el al..Simultaneous nitrification-denitrification in a rotating biological contactor[J]. Envir.Tech., 1994,15:145~153
    [41] Watamabe S.,Okabe Y.,Hirala K. el al.. Simultaneous removal of organic materials nitrogen in micro-aerobic films[J]. Wal.Sci. Tech., 1995,31(1):195~203
    [42] Yoo H.,KYU-Hong AHN,et al.Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification(SND) via nitrite in an intermittently-aerated reactor[J].Wat.Res., 1999,33(1): 145~154
    [43] M. C. M. van Loosdrecht, W. A. J. van Benthum and J.J.Herjnen. Integration of nitrification and denitrific-ation in biofilm airlift suspension reactors[J].Wat.Sci. Tech,2000,41(4-5):97~103
    [44] Zhao H.W.,Mavinic D.S. et al.. Controlling factors simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage[J].Water Res.,1999,33(4):961~970
    
    
    [45] 高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象[J].给水排水,1998,24(12):6~9
    [46] 孟怡,徐哑同.制药废水硝化-反硝化除氮研究[J].化工环保,1999,19(4):204~20
    [47] 周少奇,周吉林,范家明.同时硝化反硝化生物脱氮技术研究进展[J].环境技术,2002,(2):38~44
    [48] Broda M,Van Gerven,Kuenen J G. Wat.Res., 1997,31:1955~1962
    [49] Mulder A,Van de Graaf A A, Robertson L A, et al. FEMS Microbil Ecol., 1995,16:177~184
    [50] Van de Graaf A A,Mulder A, de Bruijn P, et al. Appl.Environ.Microbiol.,1995,61:1246~1251
    [51] Verstraete W.Nitrification-denitrification processes and technologies in new contexts[J].Environ Pollution. 1998. 102(S1):717~726
    [52] Siegrist H.Nitrogen loss in a nitrifying rotating contactor treating ammonium rich leachate without organic carbon[J].Water Sci.Technol, 1998,37(3):589~591
    [53] Strous M.van Gerven E,Zheng P, et al.Ammonium removal from concentrated waste streams with the Anaerobic Ammonium Oxidation(Anarmmox) process in different reactor configurations[J].Water Res, 1997,31 (8): 1955~1962
    [54] 胡宝兰,郑平,冯孝善.新型生物脱氮技术的工艺研究[J].应用与环境生物学报,1999,5(Suppl):68~73
    [55] 沈耀良,赵丹,黄勇.废水生物脱氮新技术——氨的厌氧氧化(ANAMMOX)[J].苏州城建环保学院学报,2002,15(1):19~24
    [56] 梁刘艳,汪苹.废水脱氮处理方法研究[J].北京轻工业学院学报,2001,19(1):29~35
    [57] 许国强,曾光明,殷志伟.氨氮废水处理技术现状及发展[J].湖南有色金属.2002,18(2):29~33
    [58] 刘文质.饮用水沸石除氟[J].水处理技术,1995,21(3):166.
    [59] 王秀春,丁志斌,都的箭.沸石的性能及其在水处理中的应用[J].解放军理工大学学报(自然科学版),2001.2(4):74~77
    60. Semnmens,M.J.;Martin,W.P.;Wat.Res., 1998,PP207
    61. Aiello,R.;Clella, C.;Nastra, A.;The Properties and Applications of Zeolites,The Chemical Society,1980,PP258
    [62] 孙家寿,刘羽,鲍世聪等.天然沸石吸附剂除铅性能[J].武汉化T学院学报,1998,20(3):31~35.
    [63] 于连群,肖举强,付俊国等.活化沸石除铁性能研究[J].铁道劳动安全卫生与环保,1997,24(2):98~100.
    [64] 郑礼胜,王士龙,张虹等.用沸石处理含铬废水的试验研究[J].环境工程,1997,15(3):14.
    [65] 陶红,马鸿文.13X型沸石净化含铜废水的实验研究[J].岩石矿物学杂志,1999,18(4):329~332.
    [66] Ciambelli,P.;Zeolites:Synthesis,Structure,Technology and Application,Elsevier Science Publishers, 1985,PP539
    [67] 肖举强,于连群,李桂荣.活化沸石去除水中氨氮的研究[J].兰州铁道学院学报,1995,14(1):79~82
    [68] 何杰,刘玉林.动态法研究天然沸石去除氨氮效果[J].水处理技术,1999,25(6):358~361
    [69] 刘玉林,何杰,谢同凤.皖南天然沸石对水中氨氮吸附性能的研究[J].吉林化工学院学报,2001,18(4):25~27
    
    
    [70] 李德生,黄晓东,王占生.生物沸石反应器在微污染水源水处理中的应用[J].环境科学,2000,21(5):71.
    [71] 徐丽花,周琪.天然沸石去除氨氮研究[J].上海环境科学,2002,21(8):506~508
    72.麦穗海,吴志超,陈绍伟.沸石强化生物脱氮工艺研究[J].上海环境科学,2002,21(10):640~642
    [73] 刘莺,黄晓佳,刘学良.有机膨润土对水中苯、甲苯、乙苯、二甲苯和铬酸根离子的吸附性能[J].应用化学,2002,19(4):317~320
    [74] 彭先佳,袁继祖,曹明礼.改性膨润土在废水处理中的应用[J].中国非金属矿工业导刊,2000,(17):40~41
    [75] 郭堃梅,马毅杰,韩和平.膨润土对pb~(2+)的吸附性能及影响吸附的主要因素[J].环境科学学报,2000,20(5):654~656
    [76] 宋和付,陈安国,夏畅斌.膨润土吸附去除Zn~(2|)、Cd~(2+)的研究[J].材料保护,200l,34(9):40~41
    [77] 胡付欣,杨性坤.改性膨润土及其在含铬废水处理中的应用研究[J].非金属矿,2002,21(1):46~47
    78.陈天虎,汪家权.蒙脱石改性吸附剂处理印染废水实验研究[J].中国环境科学,1996,16(1):60~63
    [79] 叶玲,肖子敬,黄继泰.改性膨润土在红色染液脱色处理中的应用[J].华侨大学学报(自然科学版),2000,21(4):366~370
    [80] 郭继香,袁存光,郑参军等.用蛭石吸附法脱除污水中的重金属[J].石油大学学报(自然科学版),1998,22(2):60~63
    [81] 刘福生,彭同江,张宝述.膨胀蛭石的利用及其新进展[J].非金属矿,2001,24(4):5~7
    [82] 李晖,谭光群,彭同江.蛭石对Cd~(2+)的动态吸附研究[J].化学研究与应用,2000,12(6):661~663
    [83] 谭光群,李晖,彭同江.蛭石对重金属离子吸附作用的研究[J].四川大学学报(工程科学版),2001,33(3):58~61
    [84] 李晖,谭光群,李瑞.蛭石对汞的吸附性能研究[J].重庆环境科学,2001,23(2):65~67
    [85] 刘福生,彭同江,张建洪.蛭石改性处理研究现状评述[J].矿产综合利用,2002,(2):24~27
    [86] 周平,刘东.利用天然蛭石处理造纸黑液[J].环境科学研究,2001,14(3):37~39
    [87] 弓晓峰,曹群.海泡石处理纺织印染废水[J].环境与开发,2000,15(3):16~17
    [88] 金胜明,阳卫军,唐谟堂.海泡石的表面改性酸法处理研究[J].现代化工,2001,21(1):26~28
    [89] 陈天虎,汪家权,冯军会等.上升流滤池膨胀珍珠岩滤料过滤试验研究[J].矿产保护与利用,2001,(4):11~13
    [90] 聂发辉.硕士论文:人工湿地中新型填料净化污水能力的研究[M],2003
    [91] 安立超,薛涛,孙静等.新型沸石填料间歇硝化反应器的研究[J].环境污染治理技术与设备,2003,4(9):89~
    [92] 李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002
    [93] 徐丽花,周琪.沸石去除废水中氨氮极其再生.中国给水排水[J].2003,19(3):24~26
    [94] 张曦,吴为中,温东辉等.生物沸石床污水脱氮效果及机理[J].环境科学,2003,24(5):75~80
    
    
    [95] 李旭东,张旭,薛玉等.沸石芦苇床除氮中试研究[J].环境科学,2003,24(5):158~160
    [96] T.Shimizu etc.An anaencic fluidized pellet bet bioreacton process for simultaneous removal of organic, nitrogenous and phosphorus substances[J].Wat.Res. 1994,(9)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700