BSA超滤及膜分离提纯莲心碱实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用BSA模拟体系,选用了截留分子量为5000的聚醚酮超滤膜(PEK-5000)和截留分子量为10000的聚醚砜超滤膜(PES-10000)考察了各个因素对污染度和通量衰减速率的影响趋势。实验结果表明:操作压力增大,膜污染度增大;温度升高,膜污染度出现极值,通量衰减速率同时出现极值;pH值变化,膜污染度在pH值为BSA等电点时达到最大,通量衰减速率达到最大值;料液浓度增大,膜污染度增大,通量衰减速率增大;料液流速增大,膜污染度降低,通量衰减速率降低。
    超滤过程稳态渗透通量计算一直是超滤理论研究中的一个热点。本文在过滤理论基础上,结合爱因斯坦-斯托克斯理论和Happel小室模型,推出了超滤过程稳态渗透通量计算模型。在模型中引入了超滤常数,根据超滤常数将超滤过程稳态渗透通量计算分为有滤饼层和无滤饼层两种情况。本文所建模型属于完全预测性模型,不需要辅助性试验确定模型参数。通过该模型计算,计算结果和实测结果的误差范围在50%~60%。
    舒心降压胶囊是达仁堂制药二厂申报的中药二类新药,但在生产中很难将总莲心碱和叶绿素有效分离。针对此问题在本研究中开发了脱脂棉吸附-膜分离法,在不改变总莲心碱性质情况下有效的分离了这两种相对分子质量相差很小的物质。通过此工艺,将原来工艺中的离心、过滤和萃取替代为脱脂棉吸附、过滤和膜分离,缩短了操作时间,实验结果表明:使总莲心碱含量从原来的75%提高到85%。另外还对该工艺的各个操作因素进行了考察,针对不同目标函数分别提出了较为适宜的工艺条件。
The factors which affect the fouling degree of membrane and the flux decay rate during ultrafiltration processs were studied in this paper using BSA as model system and PEK-5000 and PES-10000 ultrafiltration membrane as test membranes. The result of experiments indicates that: with operation pressure increases, the fouling degree of membrane and the flux decay rate both increase; with operation temperature increases, the fouling degree of membrane and the flux decay rate both exist maximum point; when the pH value of the feed solution equals to the isoelectric point of BSA, the fouling degree of membrane and the flux decay rate both exhibit maximum value; with the concentration of BSA increases, the fouling degree of membrane and the flux decay rate both increase; with the flow rate of feed increases, the fouling degree of membrane and the flux decay rate both decrease.
    The steady state flux prediction of ultrafiltration has been hot issues in ultrafiltration theory. In this paper a model for calculating steady state flux of ultrafiltration is developed, which is based on filtration theory and combined with Einstein-Stokes’ law and Happel’s cell model. The ultrafiltration constant is introduced to this model, by which the steady ultrafiltration process can be divided into two types: in the presence of cake and in the absence of cake. The model proposed in this work is of full predictability, and no additional experiments in determination of the model parameters are needed. The error between calculating result and experiment result is in the range of 50% to 60%.
    The Shuxin-Jiangya is the second type new medicine of Traditional Chinese Medicine made in No 2 Pharmaceutical Factory of Da Ren Tang. The low efficiency between liensinine and chlorophyll separation severely hindered the economics in the production of Shuxin-Jiangya preparation. A combined technology is developed in this paper, which coupling degrease cotton adsorption with membrane separation. By this method, liensinine and chlorophyll with only little difference in the relative molecular weight can be separated effectively. The centrifugal、filtration and extraction of conventional process were replaced by degrease cotton adsorption、filtration and membrane, thus the operating time is shorten considerably. The
    
    
    experiment result showed that: the content of active components is increase from 75%to 85%. The appropriate technical parameters of our new technology were also investigated systematically, and different optimum conditions were found for different object functions.
引文
[1] 时钧,袁权等,膜技术手册,北京: 化学工业出版社,2001, 137~162
    [2] 王学松,膜分离技术及其应用,北京:科学出版社,1994,2~4
    [3] 薛怀德,超滤膜法简要介绍,膜科学与技术,1991,11:172~175
    [4] 梁国明 陆晓峰,操作条件对膜污染及蛋白质超滤滤出速度影响的研究,净水技术,1999,67:7~9
    [5] 卞晓锴 陆晓峰,蛋白质超滤过程及超滤膜的表面改性研究现状,膜科学与技术,2001,21:46~51
    [6] Reis R V, Gadam S, Frautschy L N, High performance tangential flow filtration Biotechnology and Bioengineering, 1997, 56:71~81
    [7] 梁国明, 陆晓峰,聚醚酮超滤膜的污染及其对滤速影响的研究,水处理技术,1999,25:14~18
    [8] Munir Cheryan, Ultrafiltration Handbook, Lancaster, Technomic, 1986, 175~178
    [9] 刘昌胜,膜过滤法提取红霉素的工艺与工程问题研究;[硕士学位论文],上海;华东理工大学,1992
    [10] 翁晓姚,周仰原,关于超滤膜的几个问题,工业水处理,1997,17:15~17
    [11] Saksena S,Zedney A L.,Effect of solution pH and ionic strength on the separation of albumin from immunoglobulins by selective filtration Biotechnology and Bioengineering,1994,50:960~968
    [12] Carman, P.C., Fundamental principles of industrial filtration. Trans. Inst. Chem. Eng.,1938,16:168~188.
    [13] Blatt, W.F., A. Dravid, A.S. Michaels and L. Nelson, Solute polarization and cake formation on membrane ultrafiltration: causes, consequences, and control techniques. In: J.E. Flinn (Ed.), Membrane Science and Technology, Plenum Press, New York,1970, 47~97.
    [14] Porter, M.C., Concentration polarization with membrane ultrafiltration. Ind. Eng. Chem.Prod. Res. Dev.,1972a,11:234~248.
    [15] Gekas, V. and B. Hallstrom, Amounttransfer in the concentration polarization layer under turbulent crossflow. I. Critical literature review and adaptation of existing Sherwood correlations to membrane operations. J. Membrane Sci., 1987 ,30:163~170.
    [16] Henry, J.D., Jr., Crossflow filtration. In: N.N. Li (Ed.), Recent Developments in Separation Science, Vol. 2, CRC Press, Cleveland, OH, 1972:205~225.
    [17] Kozinski, A.A. and E.N. Lightfoot,Protein ultrafiltration: A general example
    
    
    of boundary layer filtration,AIChE. J,1972,18:1030~1040
    [18] Fane, A.G., C.J.D., Fell and A.G. Waters, The relationship between membrane surface pore characteristics and flux for ultrafiltration membranes. J. Membrane Sci,1981,9:245~262
    [19] Michaels, A.S.,New separation technique for the CPI. Chem. Eng. Prog,1968,64:31~43
    [20] Porter, M.C.,Ultraflltration of colloidal dispersions. AIChE Syrup. Ser.,1972b,68:21~30
    [21] Goldsmith, R.L., Macromolecular ultrafiltration with microporous membranes. Ind. Eng. Chem. Fundam,1971,10:113~120
    [22] Madsen, R.F., Hyperfiltration and Ultrafiltration in Plate and Frame Systems. Elsevier,New York,1977,256~305
    [23] Nakao, S., T. Normura and S. Kimura, Characteristics of macromolecular gel-layer formed on ultrafiltration tubular membrane. AIChE J.,1979,25: 615~622
    [24] Shen, J.J.S. and R.F. Probstein, On the prediction of limiting flux on laminar ultraflltration of macromolecular solutions. Ind. Eng. Chem. Fundam.,1977,16:459~465.
    [25] Probstein, R.F., J.J.S. Shen and W.F. Leung, Ultrafiltration of macromolecular solutions at high polarization in laminar channel flow,Desalination,1978,24:1~16.
    [26] Trettin, D.R. and M.P. Doshi, Limiting flux in ultraflltration of macromolecular solutions. Chem. Eng. Commun., 1980a ,4:507~522.
    [27] Chudacek, M.W. and A.G. Fane, The dynamics of polarization in unstirred and stirred ultrafiltration. J. Membrane Sci.,1984,21:145~160.
    [28] Wijmans, J.G., Nakao, S., van den Berg, J.W.A., Troelstra, F.R., Smolders, C.A., Hydrodynamic resistance of concentration polarization boundary layers in ultrafiltration. J. Membrane Sci., 1985,22:117~135
    [29] Nakao, S., J.G. Wijmans and C.A. Smolders, Resistance to the permeate flux in unstirred ultrafiltration of dissolved macromolecular solutions. J. Membrane Sci., 1986,26:165~178
    [30] Van den Berg, G.B. and C.A. Smolders, The boundary-layer resistance model for unstirred ultrafiltration. A new approach. J. Membrane Sci.,1989,40:149~172.
    [31] Segré, G. and A. Silberberg, Behaviour of macroscopic rigid spheres in Poiseuille flow. J. Fluid Mech., 1962,14:115~157.
    
    [32] Cox, R.G. and H. Brenner, The lateral migration of solid particles in
    
    
    Poiseuille flow-I. Theory. Chem. Eng. Sci., 1968,23:147~173.
    [33] Vasseur, P. and R.G. Cox, The lateral migration of a spherical particle in two dimensional shear flows. J. Fluid Mech., 1976,78:385~413.
    [34] Madsen, R.F., Hyperfiltration and Ultrafiltration in Plate and Frame Systems. Elsevier,New York, 1977,169~237
    [35] Green, G. and G. Belfort, Fouling of ultrafiltration membranes: lateral migration and the particle trajectory model. Desalination, 1980,35:129~147.
    [36] Leonard, E.F. and C.S. Vassilieff, The deposition of rejected matter in membrane separation processes. Chem. Eng. Commun., 1984,30:209~217.
    [37] Davis, R.H. and S.A. Birdsell, Hydrodynamic model and experiments for crossflow microfiltration. Chem. Eng. Commun., 1987,49:217~234.
    [38] Zydney, A.L. and C.K. Colton, A concentration polarization model for the filtrate flux in crossflow microfiltration of particulate dispersions. Chem. Eng. Commun., 1986,47:1~21.
    [39] Davis, R.H. and D.T. Leighton, Shear~induced transport of a particle layer a long a porous wall. Chem. Eng. Sci., 1987,42:275~281.
    [40] Eckstein, E.C., D.G. Bailey and A.H. Shapiro, Self~diffusion of particles in shear flow of a dispersion. J. Fluid. Mech., 1977,79:191~208.
    [41] Leighton, D.T. and A.A. Acrivos, Measurement of the shear~induced coefficient of self~diffusion in concentration dispersions of spheres. J. Fluid Mech., 1987a,177:109~131.
    [42] Romero, C.A6. and R.H. Davis, Global model of crossflow microfiltration based on hydrodynamic particle diffusion. J. Membrane Sci.,1988,39:157~185.
    [43] Pearson, J.R.A. and J.D. Sherwood, Continuum modelling of cross~flow filtration. Physico Chem. Hydrodyn., 1988,10:647~661.
    [44] Fordham, E.J. and H.K.J. Ladva, Cross-flow filtration of bentonite suspensions. Physico Chem. Hydrodyn., 1989,11:411~439.
    [45] Fane, A.G., Ultrafiltration of dispersions. J. Membrane Sci., 1984,20:249~259.
    [46] Bowen, W.R. and F. Jenner, Dynamic ultrafiltration models for charged colloidal dispersions.AIChE J. 1994a 40:.356~368
    [47] W. Richard Bowen and Paul M. Williams Dynamic Ultrafiltration Model for Proteins: A Colloidal Interaction Approch Biotechnology and Bioengineering 1996,50:125~135
    [48] P. Bacchin, D. Si~Hassen, V. Starov, M. J. Clifton A unifying model for concentration polarization, gel~layer formation and particle deposition in cross~flow membrane filtration of colloidal suspensions Chemical
    
    
    Engineering Science 2002,57:77~91
    [49] 曹春林等,中药药剂学,上海科学技术出版社,1998,2~3
    [50] 曹春林等,中药药剂学,上海科学技术出版社,1998,60~65
    [51] 姜忠义 吴洪,超滤膜分离技术在中药制剂生产中的应用,化学工业与工程,2003,20:39~44
    [52] 中国人民解放军空军北京药局,应用超滤技术制备中草药注射液,中草药通讯,1979,8:12~14
    [53] 中国人民解放军空军北京药局,超滤法制备复方中药注射液的实验研究,中草药,1981,8:12~16
    [54] 黄伟文等,超滤法制备中草药注射液的质量研究,水处理技术,1988,14,87~89
    [55] 全山丛等,超滤法和水醇法制备补骨脂注射液的实验比较研究,中草药,1990,12:3~6
    [56] 简惠,超滤新技术应用于中药口服液的可行性研究,中药新药与临床药理,1994,5:49~53
    [57] 杨张谓等,超滤工艺用于人参精口服液生产实验,中成药,1991,3:4~6
    [58] 杨张谓等,人参精采用超滤工艺的中试研究,中成药,1994,16 :4~6
    [59] 胡奇芬等,不同工艺对复方中药制剂中总多糖含量的影响,中成药,1990,12:6~9
    [60] 董波等,采用超滤法处理何首乌药液的初步研究,甘肃药学,1992,7:29~33
    [61] 张宇等,应用超滤技术制备四逆口服液的研究,佳木斯医学院学报,1992,15:30~31
    [62] 王世芩等,超滤法提取黄芩甙的初步观察, 中成药研究,1988,3:5~7
    [63] 何昌生等,甜菊糖甙超滤的应用研究, 水处理技术,1994,20:89~92
    [64] 颜峰等,超滤法在中药制剂中的应用体会, 中成药,1989,11:8~11
    [65] 俞加林,用超滤法制备中药浸膏制剂, 中药材,1989,12:44~47
    [66] 郭立玮等,大孔树脂吸附与超滤连用对瘤胃地黄丸中丹皮粉和马钱素含量的影响,南京中医药大学学报,1999,15:86~88
    [67] 张效林 薛伟明,侧柏叶乙醇提取液的超滤膜精制过程研究,现代化工,1998,18,22~26
    [68] 刘茉娥,超滤膜污染机理的研究及控制,水处理技术,1989,15,163~169
    [69] John Happel Viscous flow in multiparticle Systems:slow motion of fluids relative to beds of spherical particles,AIChE. Journal,1958,4:197~201
    
    [70] John Happel Howard Breenner., Low Reynolds Number Hydrodynamics. New Jersey:Englewood Cliffs,1965,235~286
    [71] Lianfa Song,A new model for the calculation of the limiting flux in ultratfiltration J Membr. Sci,1998 ,144,173~185
    [72] Georges Belfort Robert H.Davis Andrew L Zydney, The behavior of suspensions and macromolecular solutions in crossflow microfiltration , J Membr. Sci,1994,9:61~58
    [73] 吕武清 郑海华,莲子心的研究概况,中草药,1996,27:438~440
    [74] 潘竞先 乔梁, 莲子心钙拮抗活性成分的研究,北京医科大学学报,1989,21:401~403
    [75] 娄红祥 苑辉卿 莲子心化学成分研究 山东医科大学学报 1995,33:347~348
    [76] 王家翠 江林 莲十一个部位微量元素测定,云南中医杂志,1992,15:41~44
    [77] 吴寿金 赵秦 秦永琪,现代中草药成份化学,中国医药科技出版社,北京,2002,805~1000