用户名: 密码: 验证码:
人工电磁媒质的特性及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工电磁媒质具有很多与自然媒质完全不同的特性,并且由于它在完美透镜,隐身斗篷以及人工媒质天线方面的潜在应用,吸引了科学界广泛地关注。本文以人工媒质的电磁特性及应用为研究对象,主要的内容和贡献概括如下:
     1.首先,介绍了一种有效地获得人工媒质参数的方法:参数提取方法。其次,分别研究了由三角形开口单环加线结构、对环加线结构以及独立电磁谐振单元组成的三种新型左手媒质。最后选取三角形对环加线结构作为研究对象,通过参数提取方法、棱镜仿真结果、矩形波导中的能量传输实验共同验证了其双负特性。
     2.首次提出了一种新型平板波导测试系统,它通过两根同轴探针来激励。该系统专门用来测量人工媒质的传输特性,并且仿真与实验结果吻合良好。此外,也采用了负相移实验和亚波长聚焦这两种有效判定左手媒质双负特性的方法来验证了TOLR-wire的双负特性。
     3.研究了具有两个或多个谐振特性的三角形电磁谐振单元(TER)和非对称三角形电磁谐振单元(ATER)。通过参数提取,表面电流分布,关键参数研究以及平板波导中的能量传输实验的结果来区分不同频段谐振处的电响应和磁响应。
     4.提出了一种由TER-wire结构构成的宽带低耗左手媒质和一种由三角形左右手谐振单元(TLRR)构成的复合左右手人工媒质。对于前者来说,相对于传统的由开口谐振环加线构成的左手媒质,通过参数提取,棱镜仿真以及能量传输实验揭示了TER-wire结构比传统的开口谐振环加线结构(SRR-wire)具有更宽的带宽以及更低的损耗。后者通过仿真和实验结果共同验证了TLRR结构的确具有左手通带和右手通带特性。
     5.研究了微带贴片天线加载TER结构的特性。通过将具有负磁导率特性和负介电常数特性的TER结构阵列构成的覆层放置在贴片天线的上部,构成了两种新型人工媒质天线,结果表明这两种人工媒质微带天线的方向性、增益以及工作带宽都得到了明显地改善。
Metamaterials have many kinds of properties which are totally different from the materials in nature and have gained much attention within the scientific community because of their potential applications to build the perfect lens, invisible cloaks and metamaterial antennas. In this thesis, we focus on the electromagnetic properties and applications of the metamaterials. The main contents and contributions are listed below:
     1. First of all, an effective method to obtain the constitutive parameters of metamaterials, the parameter retrieval algorithm, is investigated. Then, three novel designs for Left-Handed Medium (LHM) composed of single triangular open loop resonator plus wire structure, double triangular open loop resonator plus wire (TOLR-wire) structure and individual electric plus magnetic resonators are introduced. Finally, the parameter retrieval results, prism simulation results and transmission experiments in rectangular waveguide all validate the double negative property of double triangular open loop resonator plus wire structure.
     2. The novel parallel plate waveguide (PPW) measurement system, excited and received by two probes, is initially proposed. The PPW is especially designed to measure the transmission characteristic of metamaterials and the measurement results correspond very well with the simulation results. Besides, two effective methods, negative phase shift experiments and sub-wavelength imaging, are also adopted to validate the left-handed property of LHM composed of TOLR-wire structures.
     3. The triangular electromagnetic resonator (TER) and asymmetric triangular electromagnetic resonator (ATER) metamaterials, which have double and multi resonance properties, are studied. The parameter retrieval results, surface current distribution, analysis of critical parameter and transmission experiment in PPW system are also utilized to distinguish the electric and magnetic response for different resonance regime.
     4. A broad bandwidth and low loss LHM composed of TER-wire and composite left- and right-handed metamaterials composed of triangular left- and right-handed resonator (TLRR) are both presented. For the former, the parameter retrieval results, prism simulation and transmission experiment reveal that TER-wire structure has a broader left-handed passband and lower loss compared with the conventional SRR-wire structure. For the latter, the TLRR structure has a left-handed passband and right-handed passband through the validation of simulation and experiment.
     5. The TER applied to the design of microstrip patch antenna is discussed. Through arranging the covers composed of negative permeability and negative permittivity TER arrays covering the patch antenna, two kinds fo novel metamaterial antennas are proposed. The results show that the directional property, gain and the return loss of the two metamaterial antennas have been improved remarkably.
引文
[1] J. C. Bose. On the rotation of plane of polarisation of electric waves by a twisted structure, Proc. Roy. Soc., 1898, 63: 146–152.
    [2] I. V. Lindell, A. H. Sihvola, and J. Kurkijarvi, Karl F. Lindman. The last Hertzian, and a Harbinger of electromagnetic chirality. IEEE Antennas Propag. Mag., 1992, 34(3): 24–30.
    [3] W. E. Kock, Metallic delay lenses. Bell Sys. Tech. J., 1948, 27: 58–82.
    [4] W. S. Weiglhofer, A. Lakhtakia, Introduction to complex mediums for optics and electromagnetics. SPIE Press, 2003, Bellingham, WA, USA.
    [5] J. B. Pendry and D. R. Smith, Reversing light with negative refraction. Physics Today, 2004, 57(6): 37-44.
    [6] V. G. Veselago. The electrodynamics of substances with simultaneously negative values ofεandμ. Sov. Phys. Usp., 1968, 10: 509-514.
    [7] P. R. Berman. Goos-H?nchen shift in negatively refractive media. Phys. Rev. E, 2002, 66: 067603.
    [8] J. B. Pendry. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett., 2000, 85: 3966-3969.
    [9] J. B. Pendry and D. R. Smith. Reversing light with negative refraction. Physics Today, 2004, 57(6): 37-44.
    [10] W. J. Padilla, D. N. Basov, D. R. Smith. Negative refractive index metamaterial. Materials Today, 2006, 9(7): 28-35.
    [11] J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys. Rev.Lett., 1996, 76: 4773-4776.
    [12] J. B. Pendry, A. J. Holden, D. J. Robbins, et al. Low frequency plasmons in thin-wire structures. J . Phys.: Condens. Matt., 1998, 10: 4785-4809.
    [13] J. B. Pendry. Magnetism from conductors and enhanced nonlinear phenomena.IEEE Trans. Microwave Theory and Technology, 1999, 47: 2075-2084.
    [14] M. Sigalas, C. T. Chan, K. M. Ho, et al. Metallic photonic band-gap materials. Phys. Rev. B, 1995, 52: 11744-11751.
    [15] D. R. Smith, S. Schultz, N. Kroll, et al. Experimental and theoretical results for a two-dimensional metal photonic band-gap cavity. Appl. Phys. Lett., 1994, 65: 645-647.
    [16] A. K. Sarychev and V. M. Shalaev. Comment on“Extremely low frequency plasmons in metallic microstructures”. Phys. Rev. B., 2001, 6: 0103145.
    [17] A. L. Pokrovsky, A. L. Efros. Electrodynamics of Metallic Photonic Crystals and the Problem of Left-Handed Materials. Phys. Rev. Lett., 2002, 89: 093901.
    [18] D. R. Smith, N. Kroll. Negative Refractive Index in Left-Handed Materials. Phys. Rev. Lett., 2000, 85: 2933-2936.
    [19] W. R. Ziokowski, E. Heyman. Wave propagation in media having negative permittivity and permeability. Phys. Rev. E., 2001, 64: 056625.
    [20] D. R. Smith, W. Padilla, D. Vier, et al. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett., 2000, 84: 4184-4187.
    [21] R. A. Shelby, D. R. Smith, N. S. C. Nemat et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett., 2001, 78: 489-491.
    [22] R. A. Shelby, D. R. Smith and S. Schultz. Experimental Verification of a Negative Index of Refraction. Science, 2001, 292: 77-79.
    [23] C. G. Parazzoli, R. B. Gregor, K. Li, et al. Experimental Verification and Simulation of Negative Index of Refraction Using Snell’s Law. Phys. Rev. Lett., 2003, 90: 107401.
    [24] M. Ayindir, K. Aydin, E. Ozbay, et al. Transmission properties of composite metamaterials in free space. Appl. Phys. Lett., 2002, 81: 120-122.
    [25] N. Katsarakis, T. Koschny, M. Kafesaki, et al. Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials. Appl. Phys. Lett., 2004, 84: 2943-2945.
    [26] L. Zhang, G. Tuttle, C. M. Soukoulis. GHz magnetic response of split ring resonators. Photon. and Nanostruct., 2004, 2: 155-159.
    [27] N. Katsarakis, T. Koschny, M. Kafesaki, et al. Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials. Phys. Rev. B: Condens. Matter Mater. Phys., 2004, 70: 201101.
    [28] K. Aydin, K. Guven, L. Zhang, et al. Experimental observation of true left-handed transmission peaks in metamaterials. Opt. Lett. 2004, 29: 2623-2625.
    [29] K. Aydin, K. Guven, N. Katsarakis, et al. Effect of disorder on magnetic resonance band gap of split-ring resonator structures. Opt. Express, 2004, 24: 5896-5901.
    [30] K. Guven, K. Aydin, K. B. Alici, et al. Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 70: 205125.
    [31] R. Moussa, S. Foteinopoulou, L. Zhang, et al. Negative refraction and superlens behavior in a two-dimensional photonic crystal, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 71: 085106.
    [32] K. Aydin, K. Guven, C. M. Soukoulis, et al. Observation of negative refraction and negative phase velocity in left-handed metamaterials. Appl. Phys. Lett., 2005, 86: 124102.
    [33] R. Ruppin. Surface polaritons of a left-handed medium. Phys. Lett. A, 2000, 277: 61-64.
    [34] R. Ruppin. Surface polaritons of a left-handed medium. J. Phys.: Condens. Matt., 2001, 13: 1811-1819.
    [35] F. D. M. Haldane. Electromagnetic surface modes at interfaces with negative refractive index make a“Not quite perfect”lens. E-print cond-mat, 2002, 15: 0206420.
    [36] D. R. Smith, D. Schurig. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett., 2003, 90: 077405.
    [37] M. W. Feise, P. J. Bevelacqua, J. B. Schneider. Effects of surface waves on the behavior of perfect lenses. Phys. Rev. B, 2002, 66: 035113.
    [38] I. S. Nefedov, S. A. Tretyakov. Photonic band gap structure containing metamaterial with negative permittivity and permeability. Phys. Rev. B, 2002, 66: 036611.
    [39] J. B. Pendry. Electromagnetic materials enter the negative age. Physics World, 2001, 14: 47-52.
    [40] M. Wiltshire, J. B. Pendry, I. R. Young, et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science, 2001, 291: 843-848.
    [41] M. Notomi. Theory of light propagation in strongly modulated photonic crystals: Refraction like behavior in the vicinity of the photonic band gap. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 62: 10696-10705.
    [42] C. Luo, S. G. Johnson, J. D. Joannopoulos, et al. All-angle negative refraction without negative effective index. Phys. Rev. B: Condens. Matter Mater. Phys., 2002, 65: 201104.
    [43] C. Luo, S. G. Johnson, J. D. Joannopoulos, et al. Subwavelength imaging in photonic crystals. Phys. Rev. B: Condens.Matter Mater. Phys., 2003, 68: 045115.
    [44] S. Foteinopoulou, E. N. Economou, C. M. Soukoulis. Refraction in media with a negative refractive index. Phys. Rev. Lett., 2003, 90: 107402.
    [45] S. Foteinopoulou, C. M. Soukoulis. Negative refraction and left-handed behavior in two-dimensional photonic crystals. Phys. Rev. B: Condens. Matter Mater. Phys., 2003, 67: 235107.
    [46] S. Foteinopoulou, C. M. Soukoulis. Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects. Phys. Rev. B: Condens. Matter Mater. Phys., 2005, 72: 165112.
    [47] E. Cubukcu, K. Aydin, E. Ozbay, et al. Electromagnetic waves: Negative refraction by photonic crystals. Nature, 2003, 423: 604-605.
    [48] E. Cubukcu, K. Aydin, E. Ozbay, et al. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett., 2003, 91: 207401.
    [49] P. V. Parimi, W. T. Lu, P. Vodo, et al. Negative refraction and left-handed electromagnetism in microwave photonic crystals. Phys. Rev. Lett., 2004, 92: 127401.
    [50] P. Vodo, P. V. Parimi, W. T. Lu, et al. Microwave photonic crystal with tailor-made negative refractive index. Appl. Phys. Lett., 2004, 85: 1858.
    [51] P.Vodo, P. V. Parimi, W. T. Lu, et al. Focusing by planoconcave lens using negative refraction, Appl. Phys. Lett., 2005, 86: 201108.
    [52] Ran L X, Huangfu J T, Chen H, et al. Microwave solid-state left-handed material with a broad bandwidth and an ultralow loss. Phys. Rev. B, 2004, 70: 073102.
    [53] Chen H S, Ran L X, Huangfu J T, et al. Left-handed materials composed of only S-shaped resonators. Phys. Rev. E, 2004, 70: 057605.
    [54] D. Schurig, J. J. Mock, D. R. Smith. Electric field coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett., 2006, 88: 041109.
    [55] J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, Negative index materials using simple short wire pairs. Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73(4): 041101.
    [56] M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, Left-handed metamaterials: The fishnet structure and its variations. Phys. Rev. B: Condens. Matter Mater. Phys., 2007, 75(23): 235114.
    [57] Y. X. He, P.He, S. D. Yoon, P. V. Parimic, F. J. Rachford, V. G. Harris, C. Vittoria, Tunable NIM using yttrium iron garnet. Journal of Magnetism and Magnetic Materials, 2007, 313 (1): 187–191.
    [58] H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averritt, D. B. Shrekenhamer and W. J. Padilla. Experimental demonstration of frequency-agile terahertz metamaterials. Nature Photonics, 2008, 2: 295–298.
    [59] C. M. Krowne, Y. Zhang. Physics of Negative Refraction and Negative Index Materials: Optical and Electronic Aspects and Diversified Approaches. Springer-Verlag New York, 2007. pp: 331–332.
    [60] A. A Zharov, I. V. Shadrivov, Y. Y. Kivshar, Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. 2003, 91: 037401.
    [61] I. V. Shadrivov, A. B. Kozyrev, V. D. Weide, W. Daniel, Y. S. Kivshar, Tunable transmission and harmonic generation in nonlinear metamaterials. Applied Physics Letters, 2008, 93: 161903.
    [62] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla. Perfect Metamaterial Absorber. Phys. Rev. Lett., 2008, 100: 207402.
    [63] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Optics Express, 2008, 16(10): 7181–7188
    [64] G. V. Eleftheriades, A. K. Iyer and P. C. Kremer. Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microwave Theory Tech., 2002, Dec., 50(12): 2702–2712.
    [65] C. Caloz and T. Itoh. Application of the transmission line theory of left-handed(LH) materials to the realization of a microstrip LH transmission line. Proc. IEEE-AP-SUSNC/URSI National Radio Science Meeting, 2002, June, 2: 412-415.
    [66] A. A. Oliner. A periodic-structure negative-refractive-index medium without resonant elements. IEEE-AP-S USNC/URSI National Radio Science Meeting, San Antonio, TX, 2002, 1: 300-303.
    [67] A. N. Lagarkov, V. N. Kissel, Near-perfect imaging in a focusing system based on a left-handed-material plate. Phys. Rev. Lett., 2004, 92(7): 077401.
    [68] A. Grbic, G V. Eleftheriades, Overcoming the diffraction limit with a planarleft-handed transmission-line lens. Phys. Rev. Lett., 2004, 92(11): 117403.
    [69] R. P. Liu, X. M. Yang, J.G. Gollub, J. J. Mock, T. J. Cui and D. R. Smith, Gradient index circuit by waveguided metamaterials. Applied Physics Letters, 2009, 94: 073506.
    [70] J. Valentine, S. Zhang, T. Zentgraf, E Ulin-Avila, D. A. Genov, G. Bartal1 and X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455: 376-379.
    [71] N. C. Panoiu, and R. M. Osgood, Numerical investigations of negative refractive index metamaterials at infrared and optical frequencies. Opt. Commun., 2003, 223: 331–337.
    [72] V. M. Shalaev, et al. Optical negative-index metamaterials. Nature Photonics, 2007, 1: 41–48.
    [73] H. J. Lezec, N. A. Dionne and H. A. Atwater, Negative refraction at visible frequencies. Science, 2007, 316: 430–432.
    [74] Liu, N. et al. Three-dimensional photonic metamaterials at optical frequencies. Nature Mater., 2008, 7: 31–37.
    [75] Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science, 2004, 303: 1494–1496.
    [76] Padilla, W. J. et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Phys. Rev. Lett., 2006, 96: 107401.
    [77] Chen, H. T. et al. Active terahertz metamaterial devices. Nature, 2006, 444: 597–600.
    [78] C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. New York: Wiley, 2004.
    [79] N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and engineering explorations. IEEE press and Wiley, 2006.
    [80] R. Marqués, F. Martín and M. Sorolla, Metamaterials with negative parameters: Theory, design and microwave applications. Wiley, 2008.
    [81] T. J. Cui, D. R. Smith, R. P. Liu, Metamaterials: Theory, Design, and Applications. Springer, 2010.
    [82] Kong J A. Electromagnetic waves in stratified negative isotropic media. Progress in Electromagnetic Research, PIER, 2002, 35: 1-52.
    [83] Kong J A, Wu B I, Zhang Y. Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and negative permeability. Appl.Phys. Lett., 2002, 80(12): 2084-2086.
    [84] Kong J A, Wu B I, Zhang Y. A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and negative permeability. Microwave Opt. Technol. Lett., 2002, 33: 136-139.
    [85] L. Wu, S. He, L. Chen. On Unusual Narrow Transmission Bands for a Multi-Layered Periodic Structure Containing Left-Handed Materials. Optics Express, 2003, 11(11): 1283-1290
    [86] S. Xiao, M. Qiu, Z. Ruan, S. He. Influence of the Surface Termination to the Point Imaging by a Photonic Crystal Slab with Negative Refraction. Applied Physics Letters., 2004, 85(19): 4269-4271
    [87] T. J. Cui, Z. C. Hao, X. X. Yin, et al. Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials. Phys. Lett. A, 2004, 323: 484-494.
    [88] T. J. Cui, J. A. Kong, Time-domain electromagnetic energy in a frequency-dispersive left-handed medium. Phys. Rev. B, 2004, 70: 205106.
    [89] T. J. Cui, J. A. Kong. Causality in the propagation of transient electromagnetic waves in a left-handed medium. Phys. Rev. B, 2004, 70: 165113.
    [90]程强,新型人工媒质(Metamaterials)的电磁特性研究,博士学位论文,2008,东南大学,南京。
    [91]隋强,李廉林,李芳.负介电常数和负磁导率微波媒质的实验.中国科学(G辑). 2003, 33(5): 416-42
    [92] X. Teng, J. Zhao, T. Jiang, Y. Feng. Negative Refraction and Partial Focusing in an Anisotropic Metamaterial Realized by a Loaded Transmission Line Network. Journal of Physics D: Applied Physics. 2006, 39(1): 213-219
    [93] J. Sun, W. Sun, T. Jiang, Y. Feng. Directive Electromagnetic Radiation of a Line Source Scattered by a Conducting Cylinder Coated with Left-Handed Metamaterial. Microwave and Optical Technology Letters. 2005, 47(3): 274-279
    [94] Y. Feng, J. Wu, J.-P. Song. Effect of Wires in Negative Refractive Index Material. Acta Physica Sinica, 2006, 55(6): 2794-2798
    [95] T. jiang, J. Zhao, Y. Feng. Planar Sub-Wavelength Cavity Resonator Containing a Bilayer of Anisotropic Metamaterials. Journal of Physics D: Applied Physics. 2007, 40: 1821-1826
    [96] D. Zhang, F. Liu, Y. Zhang, L. He, H. Li, H. Chen. Experimental Investigation of a Power Divider Based on Microstrip and Metamaterials with L-C Lumped-Elements. Microwave Journal., 2005, 48(11): 114-120
    [97] H. Li, J. Hao, L. Zhou, Z. Wei, L. Gong, H. Chen, C. T. Chan. All- Dimensional Subwavelength Cavities Made with Metamaterials. Applied Physics Letters., 2006, 89(10): 104101
    [98] L. Zhou, C. T. Chan. High-Impedance Reflectivity and Surface-Wave Band Gaps in Metamaterials. Applied Physics Letters. 2004, 84(9): 1444-1446
    [99] Z X Zhang, S J Xu. A novel balun structure with a composite right-left-handed transmission line. Microwave Opt. Technol. Lett., 2005, 45(5): 422-424.
    [100]李雁,徐善驾,张忠祥.新型左手传输线馈电阵列天线.红外与毫米波学报, 2007, 26(2): 137-140.
    [101]吴群,孟繁义,傅佳辉,等.基于双负介质与负介电常数介质交叠结构的谐振腔研究.物理学报, 2008, 57(4): 2179-2185.
    [102]吴群,孟繁义,武明峰,等.一种分析异向介质中导线阵列宏观效应的新方法.电子学报, 2007, 35(8): 1472-1475.
    [103] Q. Zhao, X.-P. Zhao, L. Kang, F.-L. Zhang, Y.-H. Liu. Defect Effect in the One-Dimensional Negative Permeability Material. Acta Physica Sinica., 2004, 53(7): 2206~2211
    [104] C.-R. Luo, L. Kang, Q. Zhao, Q.-H. Fu, J. Song, X.-P. Zhao. Effect of Nonuniform-Defect Split Ring Resonators on the Left-Handed Metamaterials. Acta Physica Sinica., 2005, 54(4): 1607~1612
    [105]李龙,广义电磁谐振与EBG电磁局域谐振研究及应用,博士学位论文,2005,西安电子科技大学。
    [106]杨娟,二维光子晶体及左手媒质研究,博士学位论文,2005,西安电子科技大学。
    [107]梁乐,紧致型电磁带隙结构和双负媒质结构研究,博士学位论文,2008,西安电子科技大学。
    [108]陈亮,等效异向介质的特性与结构研究,博士学位论文,2008,西安电子科技大学。
    [109]刘松华,异向介质于基于EBG的相控阵天线研究,博士学位论文,2008,西安电子科技大学。
    [110]杨锐,异向介质的电磁特性及应用研究,博士学位论文,2008,西安电子科技大学。
    [111] J. B. Pendry. Negative Refraction Makes a Perfect Lens. Phys. Rev. Lett., 2000, 85: 3966-3969.
    [112] N. Fang, H. Lee, C. Sun, X. Zhang, Sub–Diffraction-Limited Optical Imagingwith a Silver Superlens. Science, 2005, 308(5721): 534–537.
    [113] J. Yao, Z Liu, Y Liu, Y Wang, C Sun, G Bartal, A. M. Stacy,; X. Zhang, Optical Negative Refraction in Bulk Metamaterials of Nanowires. Science, 2008, 321 (5891): 930-933.
    [114] D. R. Smith, J. J. Mock, A. F. Starr, D. Schurig, Gradient index metamaterials. Phys. Rev. E, 2005, 71: 036609.
    [115] R. Liu, Q. Cheng, J. Y. Chin, J. J. Mock, T. J. Cui, and D. R. Smith, Broadband gradient index microwave quasioptical elements based on non-resonant metamaterials. Optic Express, 2009, 17(23): 21030-21041.
    [116] U. Leonhardt, Optical conformal mapping, Science, 2006, 312: 1777-1780.
    [117] J. B. Pendry, D. Schurig, D. R. Smith, Controlling electromagnetic fields. Science, 2006, 312: 1780-1782.
    [118] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 2006, 314 (5801): 977-980.
    [119] R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith, Broadband ground-plane cloak. Science, 2009, 323: 366-369
    [120] K. B Alici, E. ?zbay, Radiation properties of a split ring resonator and monopole composite. Physica status solidi (b), 2007, 244: 1192
    [121] S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, P. Vincent, A Metamaterial for Directive Emission. Physical Review Letters, 2002, 89 (21): 213902.
    [122] O. F. Siddiqui, M. Mo; G. V. Eleftheriades, Periodically loaded transmission line with effective negative refractive index and negative group velocity. IEEE Transactions on Antennas and Propagation, 2003, 51: 2619.
    [123] B.-I. Wu, W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk and J. A. Kong, A Study of Using Metamaterials as Antenna Substrate to Ehance Gain. Progress in Electromagnetics Research, 2005, 51: 295–328.
    [1] J. B. Pendry, A. J. Holden, W. J. Stewart, et al. Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys. Rev. Lett., 1996, 76: 4773-4776.
    [2] J. B. Pendry. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory and Tech., 1999, 47: 2075-2084.
    [3] R. A. Shelby, D. R. Smith and S. Schultz. Experimental Verification of a NegativeIndex of Refraction. Science, 2001, 292: 77-79.
    [4] R. A. Shelby, D. R. Smith, N. S. C. Nemat et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett., 2001, 78: 489-491.
    [5] D. R. Smith, W. Padilla, D. Vier, et al. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett., 2000, 84: 4184-4187.
    [6] K. Aydin, I. Bulu, K. Guven, et al. Investigation of magnetic resonances for different split-ring resonator parameters and designs. New Journal of Physics, 2005, 7: 168(1-15).
    [7] N. Katsarakis, T. Koschny, and M. Kafesaki. Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials. Phys. Rev. B, 2004, 70: 201101.
    [8] M. Kafesaki, T. Koschny, R. S. Penciu, et al. Left-handed metamaterials: detailed numerical studies of the transmission properties. J. Opt. A: Pure Appl. Opt., 2005, 7: S12–S22.
    [9] I. V. Shadrivova, A. N. Reznik, Y. S. Kivshar. Magnetoinductive waves in arrays of split-ring resonators. Physica B, 2007, 394: 180-183.
    [10] I. V. Shadrivov, D. A. Powell, S. K. Morrison and Y. S. Kivshar. Scattering of electromagnetic waves in metamaterial superlattices. Appl. Phys. Lett., 2007, 90: 201919.
    [11] B. D. F. Casse, H. O. Moser, L. K. Jian, et al. Fabrication of 2D and 3D Electromagnetic Metamaterials for the Terahertz Range. Journal of Physics: Conference Series, 2006, 34: 885–890.
    [12]刘亚红,罗荣春,赵晓鹏,微波左手材料及其应用前景,功能材料, 2006, 37(3):339-344.
    [13]艾芬,白杨,徐芳等,基于铁氧体基板的开口谐振环的可调微波左手特性研究,物理学报, 2008, 57(7):4189-4193.
    [14]罗春荣,康雷,赵乾等,非均匀缺陷环对微波左手材料的影响,物理学报:2005, 54(4): 1607-1612.
    [15] D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, Phys. Rev. B, 2002, 65: 195104.
    [16] R. W. Ziolkowski. Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propagat., 2003, 51(7): 1516-1529.
    [17] X. Chen, T. M. Grzegorczyk, B. I. Wu, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E., 2004, 70: 016608.
    [18] D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E, 2005, 71: 036617.
    [19] V. G. Veselago. The electrodynamics of substances with simultaneously negative values ofεandμ. Sov. Phys. Uspekhi, 1968, 10: 509-514.
    [20] T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis. Effective medium theory of left-handed materials. Phys. Rev. Lett., 2004, 93:107402.
    [21] C. Caloz, T. Itoh. Electromagnetic metamaterials: Transmission line theory and microwave applications. New York: Wiley, 2004, 4-9.
    [22] D. Schurig, J. J. Mock, and D. R. Smith, Electric-field-coupled resonators for negative permittivity metamaterials, Appl. Phys. Lett., 2006, 88: 041109.
    [23] Ruopeng Liu, Aloyse Degiron, Jack J. Mock, and David R. Smith, Negative index material composed of electric and magnetic resonators, Appl. Phys. Lett., 2007 90(263504): 1-3.
    [24] Cheng Zhu, Jing-Jing Ma, Liang Chen, and Chang-Hong Liang, Negative Index Metamaterials Composed of Triangular Open-loop Resonator and Wire Structures. Microwave and Opt. Tech. Lett., 2009, 51(9): 2022-2025.
    [25] K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C.M. Soukoulis, E. Ozbay. Experimental observation of true left-handed transmission peaks in metamaterials. Optics Letters, 2004, 29(22): 2623-2625.
    [26] K. Aydin, E. Ozbay, Left-handed metamaterial based superlens for subwavelength imaging of electromagnetic waves. Appl. Phys. A, 2007, 87: 137-141.第三章
    [1] Veselago V. G. The electrodynamics of substances with simultaneously negative values ofεandμ. Soviet Physics Uspekh1, 1968, 10(4): 509-514.
    [2] K. Aydin, E. Ozbay, Left-handed metamaterial based superlens for subwavelength imaging of electromagnetic waves. Applied Physics A, 2007, 87: 137-141.
    [3] G. Lubkowski, B. Bandlow, R. Schuhmann, T. Weiland, Effective modeling of double negative metamaterial macrostructures. IEEE Transactions on Microwave Theory and Tech., 2009, 57(5): 1136-1146.
    [4] R. A. Shelby, D. R. Smith, and S. Schultz. Experimental Verification of a Negative Index of Refraction. Science, 2001, 292: 77–79.
    [5] D. Schurig, J. J. Mock, and D. R. Smith. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett., 2006, 88:041109.
    [6] Ruopeng Liu, Aloyse Degiron, Jack J. Mock, and David R. Smith. Negative index material composed of electric and magnetic resonators. Appl. Phys. Lett., 2007, 90: 263504.
    [7] G. V. Eleftheriades. A Generalized Negative-Refractive-Index Transmission-Line (NRI–TL) Metamaterial for Dual-Band and Quad-Band Applications. IEEE Microw. Wirel. Compon. Lett., 2007, 17(6): 415–417.
    [8] I.-H. Lin, M. De Vincentis, C. Caloz, and T. Itoh. Arbitrary dual-band components using composite right/left-handed transmission lines. IEEE Trans. Microwave Theory Tech., 2004, 52(4): 1142–1149.
    [9] H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong. Metamaterial exhibiting left-handed properties over multiple frequency bands. J. Appl. Phys., 2004, 96(9): 5338–5340.
    [10] Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer. A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators. Appl. Phys. Lett., 2008, 93: 191100.
    [11] T. Koschny, P. Markos, D.R. Smith, C.M. Soukoulis. Resonant and antiresonant frequency dependence of the effective parameters of metamaterials [J]. Physical Review E, 2003, 68: 065602.
    [12] W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D. Averitt, Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Phys. Rev. B, 2007, 75: 041102.
    [13] H.-T. Chen, J. F. O'Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, "Complementary planar terahertz metamaterials" Optics Express, 2007, 15(3):1084-1095.
    [14] X. Chen, T. M. Grzegorczyk, B.-I.Wu, J. Pacheco, and J. A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E, 2004, 70: 016608.
    [15] D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E, 2005, 71:036617.
    [1] V. Veselago, The electrodynamics of substances with simultaneously negative values of ? and? . Sov. Phys. Usp., 1968, 10: 509–514.
    [2] J. Pendry, A. J. Holten, D. Robbins, and W. J. Stewart, Extremely Low Frequency Plasmons in Metallic Mesostructures. Phys. Rev. Lett., 1996, 76(25): 4773-4776.
    [3] J. Pendry, A. J. Holten, D. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech., 1999, 47(11): 2075-2084.
    [4] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity.Phys. Rev. Lett., 2000, 84(18): 4184-4187.
    [5] H. S. Chen, L. X. Ran, J. T. Huangfu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, Negative refraction of a combined double S-shaped metamaterial. Appl. Phys. Lett., 2005, 86: 151909.
    [6] R. Simovski and S. L. He, Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting ? particles. Phys. Lett. A, 2003, 311: 254-263.
    [7] R. P. Liu, A. Degiron, J. J. Mock, and D. R. Smith, Negative index material composed of electric and magnetic resonators. Appl. Phys. Lett., 2007, 90: 263504.
    [8] J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, Negative index materials using simple short wire pairs. Physical Review B, 2006, 73(4): 041101.
    [9] C. Zhu, J. J. Ma, Long Li, C. H. Liang, Multiresonant Metamaterial Based on Asymmetric Triangular Electromagnetic Resonators. IEEE Antennas Wireless Propag. Lett., 2010, 9: 99–102.
    [10] D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E, 2005, 71: 036617.
    [11] T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Effective Medium Theory of Left-Handed Materials. Phys. Rev. Lett., 2004, 93: 107402.
    [12] N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, Ekmel Ozbay and C. M. Soukoulis, Left- and right-handed transmission peaks near the magneticresonance frequency in composite metamaterials. Phys. Rev. B, 2004, 70: 201101.
    [13] J. F. Woodley, M. S. Wheeler, and M. Mojahedi, Left-handed and right-handed metamaterials composed of split ring resonators and strip wires. Phys. Rev. E, 2005, 71: 066605.
    [1] I. J.鲍尔, P.布哈蒂亚著;梁联倬,寇廷耀译,微带天线,北京,电子工业出版社, 1984.
    [2]钟顺时,微带天线理论与应用,西安,西安电子科技大学出版社,1988.
    [3]张均,刘克成,微带天线理论与工程北京,国防工业出版社,1990.
    [4] N. Seddon, T. Bearpark, Observation of the Inverse Doppler Effect. Science, 2003 302(5650): 1537-1540.
    [5] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 2006, 314: 977-980.
    [6] S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, P. Vincent, A Metamaterial for Directive Emission. Phys. Rev. Lett., 2002, 89 (21): 213902.
    [7] O. F. Siddiqui, M. Mojahedi, G. V. Eleftheriades. Periodically LTL with Effective NRI and Negative Group Velocity. IEEE Transactions on Antennas and Propagation, 2003, 51 (10): 2619–2625.
    [8] B. A. Kamil, E. ?zbay. Radiation properties of a split ring resonator and monopole composite. Phys. Stat. Sol. (b), 2007, 244 (4): 1192–1196.
    [9] B.-I. Wu, W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk and J. A. Kong. A Study of Using Metamaterials as Antenna Substrate to Ehance Gain. Progress in Electromagnetics Research, 2005, 51: 295–328.
    [10] N. Engheta, R. W. Ziolkowski. Metamaterials: physics and engineering explorations. Wiley & Sons., 2006, pp. 43–85.
    [11] www.rayspan.com
    [12] K.B. Alicia and E. Ozbay, Electrically small split ring resonator antennas. Appl. Phys. Lett., 2007, 101:083104.
    [13] J. X. Niu, Dual-band dual-mode patch antenna based on resonant-type metamaterial transmission line. Electon. Lett., 2010, 46(4):266-268.
    [14] Jiang Xiong,Hui Li,Yi Jin and Sailing He, Modified TM020 Mode of aRectangular Patch Antenna Partially Loaded With Metamaterial for Dual-Band Applications. IEEE Antennas and Wireless Propagat. Lett., 2009, 8, pp. 1006-1009.
    [15] R. W. Ziolkowski, Metamaterial-based Antennas: Research and Developments. IEICE Trans. Electron., 2006, E89-C(9): 1267-1275
    [16] S.N. Burokur, M. Latrach, and S. Toutain, Theoretical investigation of a circular patch antenna in the presence of a left-handed medium, IEEE Antennas Wireless Propagat. Lett., 2005, 4: 183–186.
    [17] A. Erentok, P. Luljak, and R.W. Ziolkowski, Antenna performance near a volumetric metamaterial realization of an artificial magnetic conductor, IEEE Trans. Antennas Propag., 2005, 53(1): 160–172.
    [18] P. Ikonen, S. Maslovski, and S. Tretyakov, PIFA loaded with artificial magnetic material: Practical example for two utilization strategies, Microw. Opt. Technol. Lett., 2005, 46(3): 205–210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700