用户名: 密码: 验证码:
换热管及内外流体多场耦合数值分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管壳式换热器是过程工业中广泛应用的换热设备,换热效率分析、设备安全评价一直是换热器设计、运行维护中的关键技术问题。本文将管壳程流体与换热管结构相结合,开展流体域流场及温度场、结构域位移场及温度场的多场耦合数值分析方法研究,具有重要的学术价值和良好的工程应用前景。管壳式换热器多场耦合分析是一个涉及多物理场计算、多界面耦合和多参数迭代收敛的数值模拟,本着从简单到复杂的原则,开展如下研究工作。
     首先,选择套管式换热器为研究对象,流体域多物理场分析采用有限体积法、结构域多物理场分析采用有限单元法,建立了小变形条件下轴对称结构与流体的多场耦合模型,推导了轴对称耦合界面温度与热量双向传递、界面载荷单向传递的插值计算公式和迭代格式,建立了耦合界面完全匹配网格的直接传递法、非匹配网格的最小距离法和函数插值矩阵法。算例表明:界面非匹配网格与匹配网格的数值模拟结果基本相同,验证了耦合界面非匹配网格插值算法的正确性;多场耦合数值模拟得到的套管式换热器光管管型总传热系数,与解析式计算结果的最大误差小于10.2%,为复杂管型换热系数计算提供了数值模型和计算方法。
     其次,建立了径向大变形条件下轴对称结构与管程流体的多场耦合模型,推导了轴对称耦合界面位移和载荷双向传递的插值计算公式和迭代格式。算例表明:在低速层流作用下,随着径向位移的增大,流体进口压力减小,进出口温差减小,壁面传热系数下降,但流道中的主流速度和温度并没有出现扩展现象,换热性能降低。
     其三,建立了横向振动条件下三维管壳结构与流体的多场耦合瞬态动力学模型,综合考虑拉格朗日和欧拉描述的优缺点,建立了套管式换热器任意拉格朗日欧拉动网格法,解决了流体域流动和结构域大变形、振动引起的网格变化问题;依据界面位移协调、载荷平衡,以及温度连续和热量守恒条件,推导了随时间变化的三维界面温度与热量、位移与载荷的多场耦合迭代格式,给出了收敛判断准则;根据流固耦合理论,建立了套管式换热器多场耦合充分算法,实现界面物理量的时间同步推进。算例表明:无阻尼振动换热管在壳程流体介质中作周期性衰减运动,衰减频率为80.1Hz,比固有频率101.5Hz下降了21%;还得到了激振力大小、激振力频率、壳程介质流速、密度、粘度、壳程外边界尺寸对套管式换热器多场耦合瞬态响应计算结果的影响规律。
     其四,建立了旋转运动条件下细长管与管内外流体的流固耦合动力学模型,将细长管离散成梁单元,依据梁单元与流体域体积元关系,推导了三维柱面耦合边界时的位移和载荷插值计算公式,给出了收敛判断准则。算例表明:旋转细长管各处的横向运动轨迹不同,发生公转和自转现象,细长管与管内外流体耦合效应明显。
     最后,建立了横向振动条件下多管束与流体的多场耦合瞬态动力学模型,推导了多管束耦合界面条件下的多场耦合迭代格式,给出了收敛判断准则,解决了换热管与换热管之间界面物理量相互影响与迭代收敛问题;运用分布式PC机求解技术,实现了PC机求解多界面多场耦合问题。算例表明:位于刚性换热管之中的弹性换热管瞬态响应呈现周期性发散状态,得到了正三角形和转角三角形排列弹性管束之间的瞬态响应规律,多管束与流体多场耦合呈现复杂的瞬态响应现象。
     本文研究成果也可为热采井、海洋钻井隔水管束等石油钻采工程中的多场耦合分析提供理论基础和数值计算方法。
Shell-and-tube heat exchanger is widely used in the process industry. Heat transfer efficiency analysis, and equipment safety evaluation is the key technical issues in heat exchanger design, operation and maintenance. In this paper, tube-side and shell-side fluid is combined with the structure of heat exchange tube, numerical simulation method of multi-physics couping with flow and temperature field in fluid domain, and displacement and temperature field in structure domain, is carried out. It has important academic value and good prospects for engineering applications. Multi-field coupling analysis of shell-and-tube heat exchanger is numerical simulation, involving multi-field calculation, multi-interface coupling and multi-parameter iterative. At the point of gradual research principle from the simple to complex issues, the research work are as follows.
     First, select casing heat exchanger as the research object, use finite volume method to analysis multi-physics of fluid domain, use finite element method to analysis multi-physics of solid domain. Under the condition of small deformation, the multi-field coupled model of axisymmetric fluid and solid is established. For two-way transfer of temperature and heat flux and one-way transfer of force at the two-dimensional coupling interface, the interpolation formula and iterative is derived. Direct transfer method of exactly match grid, the minimum distance method and interpolation function matrix method of non-matching grid is established. The example shows that non-matching grid interfaces with the matching grid interfaces have the same numerical results. The accuracy of non-matching grid interpolation algorithm is verified. Compared the numerical result of multi-field coupling with analytical formula, the maximum error of the overall heat transfer coefficient is 10.2%. It provides numerical model and method for the heat transfer coefficient calculation of complex heat exchange tube.
     Second, under the condition of large radial deformation, the multi-field coupled model of the symmetry structure and tube-side fluid is established. For two-way coupling of displacement and force at the coupling interface, the interpolation formula and iterative scheme is derived. The example shows that, under the low speed laminar flow, with the increase of radial displacement, inlet pressure decreases, temperature difference between the inlet and outlet increases, wall heat transfer coefficient decreases, but the mainstream flow velocity and temperature has no expansion, the heat transfer performance is decreases.
     Third, under the condition of lateral vibration, the multi-field coupled transient dynamic model of three-dimensional shell-and-tube structure and fluid is established. Considering the advantages and disadvantages of Lagrangian and Eulerian description, ALE moving grid method is established to solve the flow of fluid domain, and the problems of large deformation and transient problems of solid domain. Basis on the conditione of the interface displacement compatibility, load balance, temperature continuity and energy conservation, iterative scheme of temperature and heat flux, displacement and force for multi-field coupling is derived, and convergence criterion is given. According to theory of fluid-structure interaction, the full algorithm of multi-physics couping to promote physical value with synchronization time. The example shows that tube without damping vibration has periodic motion attenuation, attenuation frequency is 80.1 Hz, it decreases by 21% from natural frequency. The inflence of the exciting force, the exciting force frequency, shell-side fluid velocity, density, viscosity, size of the outer boundary of the shell side on transient response of casing heat exchanger, is also received.
     Fourth, under the condition of rotate movement, the dynamics model of fluid-structure interaction for slender tube with its inner pipe fluid and outer annular fluid is established. The slender tube discretes into beam elements, based on the relationship of beam element and volume element, interpolation formula of displacement and force is derived, and the convergence criterion is given. The example shows that horizontal trajectory of rotating slender tube is diferent at different parts, and the phenomenon of revolution and rotation occures. Slender tube with its fluids has a strong coupled phenomenon.
     Finally, under the condition of transverse vibration, the multi-field coupled transient dynamic model of multi-tube bundles and fluid is established. Iterative scheme of multi-interface and multi-field is derived, and the convergence criterion is given. The problem of physical interaction and iterative convergence between tubes is solved. Using distributed technology, the caculation of large-scale multi-bundle and multi-field coupling numerical simulation is realized. The example shows that the flexibe tube in rigid tubes has cyclical divergence transient state. The inflence of flexibe multi-bundles on transient response is received. Multi-bundles and fluid presents complex multi-field coupling phenomena.
     This research also provides the theoretical basis and numerical methods for thermal recovery wells, offshore drilling riser tubes and other oil drilling enginering in the multi-field coupling analysis.
引文
[1]刘明言,崔岩,黄鸿鼎等.管壳式换热器工艺设计进展[J].石油化工设备,2003,32(5):34-37.
    [2]刘明言,林瑞泰,李修伦等.管壳式换热器工艺设计的新挑战[J].化学工程,2005,33(1):16-19.
    [3]张少维,桑芝富.壳程结构对换热器性能影响的数值研究[J].石油机械,2005,33(9):24-26.
    [4]王丹,董其伍,刘敏珊.管壳式换热器壳程特性数值模拟[J].南京工业大学学报,2009,31(5):52-57.
    [5]Prithiviraj M, Andrews M J. Three dimensional numerical simulation of shell-and-tube heat exchangers. Part I:Heat Transfer. Numerical Heat Transfer,1998, Part A,33(B): 817-828.
    [6]Patankar S V, Spalding D B. Heat exchanger design theory source book. McGRAW-Hill Book Company, New York,1974.155-176.
    [7]Karayannis N, Markatos N C. Mathmatical modeling of heat exchangers. Berry man R J. Proceedings of the Tenth International Heat Conference, Brighton, UK, The Industrial Sessions Papers,1994.13-18.
    [8]Prithiviraj M, Andrews M J. Three dimensional numerical simulation of shell-and-tube heat exchangers. Part II:Heat Transfer[J]. Numerical Heat Transfer,1998, Part A,33(B): 817-828.
    [9]Hayes A M, Khan J A. The thermal modeling of a matrix heat exchanger using a porous medium and the thermal non-equilibrium model[J]. International Journal of Thermal Sciences,2008,47(10):1306-1315.
    [10]Missirlis D, Yakinthos K, Palikaras A. Experimental and numerical investigation of the flow field through a heat exchanger for aero-engine applications [J]. International Journal of Heat and Fluid Flow,2008,26(3):440-458.
    [11]黄兴华,王启杰,陆震.管壳式换热器壳程流动和传热的三维数值模拟[J].化工学报,2000,51(3):297-302.
    [12]解衡,高祖瑛.管壳式换热器流场三维数值模拟[J].核科学与工程,2002,22(3):240-243.
    [13]邓斌,陶文铨.管壳式换热器壳侧湍流流动的数值模拟及实验研究[J].西安交通大学学报,2003,37(9):889-893.
    [14]邓斌,李欣,陶文栓.多孔介质模型在管壳式换热器数值模拟中的应用[J].工程热物理学报,2004,25(增刊):167-169.
    [15]Dong Q W, Liu M S, Zhao X D. Research on the characteristic of shellside support structures of heat exchanger with longitudinal flow of shellside fluid[J]. IASME Trans, 2005,8 (2):1491-1498.
    [16]古新,董其伍,刘敏珊.周期性模型在管壳式换热器数值模拟中的应用[J].热能动力工程,2008,23(1):64-68.
    [17]古新,董其伍,王珂.基于三维实体模型的管壳式换热器壳程流场和温度场数值研究[J].压力容器,2008,25(5):1-5.
    [18]王艳云,李志安,刘红禹等.FLUENT软件对管壳式换热器壳程流体数值模拟方法可行性的验证[J].管道技术与设备,2007,6:46-48.
    [19]王丹,董其伍,刘敏珊.管壳式换热器壳程特性数值模拟[J].南京工业大学学报(自然科学版),2009,31(5):52-57.
    [20]谢洪虎,江楠.管壳式换热器壳程流体流动与换热的数值模拟[J].化学工程,2009,37(9):9-12.
    [21]Gulyani B B. Estimating number of shells in shell and tube heat exchangers:a new approach based on temperature cross[J]. Transactions of the ASME J of Heat Transfer, 2000,122 (3):566-571.
    [22]周兵,陈亚平,王伟晗.管壳式换热器壳侧强化传热与管束支撑方式的研究进展[J].节能,2009,3:17-20.
    [23]王丰华.管壳式换热器强化传热技术进展[J].硫酸工业,2009,2:13-17.
    [24]赵斌,张秀东.污垢对管壳式换热器的影响[J].煤气与热力,2005,25(8):43-44.
    [25]罗鹏,周远洋,康铁鑫等.管壳式换热器壳程多相流在线清洗技术研究(Ⅰ)—数值模拟[J].沈阳化工学院学报,2009,23(3):250-254.
    [26]EN13445:2002 (E), Unfired Pressure Vessels[S]. Part 3:Design, Oct1 14,2002.
    [27]2007 ASME Boiler & Pressure Vessel Code, Ⅷ Division 2, Alternative Rules, Rules for Construction of Pressure Vessels[S].2007.
    [28]陆明万,寿比南.新一代的压力容器分析设计规范——ASMEⅧ-2 2007简介[J].压力容器,2007,24(9):42-47.
    [29]陈登丰.改写版ASME-2 2007概况[J].化工设备与管道,2007,44(4):1-8.
    [30]丁伯民.对我国压力容器和换热器标准的一些想法[J].压力容器,2009,26(11):50-53.
    [31]丁伯民.压力容器标准应用的探讨[J].化工设备与管道,2001,38(2):5-10.
    [32]周羽,包士毅,董建令.压力容器分析设计方法进展[J].清华大学学报(自然科学版),2006,886-892.
    [33]Kroenke W C, Addicott G W, Hinton B M. Interpretation of finite element stresses according to ASME section III[J]. ASME Pressure Vessel and Piping,1975,63:98-112.
    [34]Hollinger G L, Hechmer J L. Summary of example problems from PVRC project on three dimensional stress criteria[J]. ASME Pressure Vessel and Piping,1996,338: 19-24.
    [35]Lu M W, Chen Y, Li J G. Two-step approach of stress classification and primary structure method[J]. Pressure Vessel Tech,2000,122(1):2-8.
    [36]Lu M W, Li J G. Primary Structure—An important concept to distinguish primary stresses[J]. Seismic Engineering, ASME PVP,1996,340:357-363.
    [37]Mackenzie D, Boyle J T, Hamilton R. The elastic compensation method for limit and shakedown analyses:A review[J]. J Strain Analysis for Engineering Design,2000,35 (3):171-188.
    [38]Seshadri R. Robust Stress-classification of pressure components using the GLOSS and GLOSS R-Node methods[J]. J Pressure Vessel Tech,1996,118(2):208-215.
    [39]丁伯民.对分析设计方法发展的回顾和分析[J].压力容器,2008,25(9):15-19.
    [40]张俊杰,刘红,陈佐一.换热器管束流体激振的研究现状评估及新方法[J].清华大学学报,2003,43(10):1432-1436.
    [41]周郡昌.海洋深水钻井隔水管系统分析[D].南充:西南石油学院,2001.
    [42]梁亮文,万德成.横向受迫振荡圆柱低雷诺数绕流问题数值模拟[J].海洋工程,2009,27(4):45-53.
    [43]Lee T R, Chang Y S, Choi J B. Numerical simulation of cylinder oscillation by using a direct forcing technique[J]. Nuclear Engineering and Design,2010,240(8):1941-1948.
    [44]阳倦成,张红娜,李小斌等.黏弹性流体纯弹性不稳定现象研究综述[J].力学进展,2010,40(5):495-516.
    [45]畅元江,陈国明,许亮斌.导向架隔水管在波流联合作用下的非线性动力响应[J].中国石油大学学报(自然科学版),2006,30(5):74-77.
    [46]林海花,王言英.波流共同作用下隔水管动力响应非线性分析[J].船舶力学,2009,13(2):189-195.
    [47]林海花,王言英.浪流共同作用下隔水管涡激动力响应分析[J].哈尔滨工程大学学报,2008,29(2):121-125.
    [48]Wang Teng, Zhang Xiu-zhan, Zhu Wei-quan. Vessel motion effects on nonlinear dynamics of deepwater drilling riser[J]. Journal of Ship Mechanics,2010,14(6): 606-618.
    [49]赖永星.换热器管束动态特性分析及流体诱导振动研究[D].南京:南京工业大学,2006.
    [50]杨和振,李华军.参数激励下深海立管动力特性研究[J].振动与冲击,2009,28(9):65-69.
    [51]李军强,刘宏昭,何钦象等.波浪力作用下海洋钻井隔水管随机振动研究[J].机械科学与技术,2004,23(1):7-10.
    [52]王定标,魏新利,向飒等.大型管壳式换热器的随机响应分析[J].振动与冲击,2006,25(3):142-146.
    [53]Zhu J Y. Stochastic stability of flow-induced vibration[D]. Waterloo:University of Waterloo,2008.
    [54]王伟桥,张若京.管阵动力响应的模态分析[J].力学季刊,2000,21(2):88-95.
    [55]Yu Ming-Huei, Lin Tsun-Kuo. A numerical study on fluid elastic vibrations of multiple cylinders in cross flow[J]. Journal of the Chinese Institute of Engineers,2005,28(1): 101-110.
    [56]Hosseini-Kordkheili S A. A new continuum based non-linear finite element formulation for modeling of dynamic response of deep water riser behavior[D]. London:Brunel University,2009.
    [57]Chang Yuan-jiang, Chen Guo-ming. Theoretical investigation and numerical simulation of dynamic analysis for ultra-deepwater drilling risers[J]. Journal of Ship Mechanics, 2010,14(6):596-605.
    [58]Smith R, O'Brien P, O'Sullivan T. Fatigue analysis of unbonded flexible risers with irregular seas and hysteresis, The 2007 Offshore Technology Conference, OTC07, Houston, Texas, USA, April 30-May 3.
    [59]薛鸿祥,唐文勇,张圣坤.深海立管涡激共振疲劳寿命简化计算方法[J]工程力学,2008,25(5):231-234.
    [60]畅元江,陈国明,刘健.深水钻井隔水管的波致长期疲劳[J].机械强度,2009,31(5):797-802.
    [61]石晓兵,郭昭学,聂荣国等.海洋深水钻井隔水管变形及载荷分布规律研究[J].天然气工业,2004,24(3):88-90.
    [62]林海花.隔水管涡激动力响应及疲劳损伤可靠性分析[D].大连:大连理工大学,2008.
    [63]孙友义,陈国明.超深水钻井系统隔水管波致疲劳研究[J].石油学报,2009,30(3):460-464.
    [64]鞠少栋,陈国明,盛磊祥等.基于CFD的深水隔水管螺旋列板几何参数优选[J].中国石油大学学报(自然科学版),2010,34(2):110-113.
    [65]陈伟民,张立武,李敏.采用改进尾流振子模型的柔性海洋立管的涡激振动响应分析[J].工程力学,2010,27(5):240-246.
    [66]张立武,陈伟民.深水细长柔性立管涡激振动响应形式判定参数研究[J].中国海上油气,2010,22(3):202-206.
    [67]饶志标,杨建民,付世晓等.剪切流下钢悬链线立管涡激振动响应研究[J].振动与冲击,2010,29(10):4-8.
    [68]张俊杰,刘红,陈佐一.换热器管束流体激振研究的新思路[J].核动力工程,2003,24(6):517-520.
    [69]畅元江,陈国明,孙友义等.深水钻井隔水管的准静态非线性分析[J].中国石油大学学报(自然科学版),2008,32(3):114-118.
    [70]畅元江.深水钻井隔水管设计方法及其应用研究[D].东营:中国石油大学(华东),2008.
    [71]Omar H. Numerical simulations of fluidelastic instability in tube bundles[D]. Fredericton: University of New Brunswick,2010.
    [72]童鲁海.管壳式换热器的振动特性分析及模态试验[J].机电工程,2009,26(7):46-48.
    [73]Olinto C R, Indrusiak M L, Endres L A. Experimental study of the characteristics of the flow in the first rows of tube banks[J]. Nuclear Engineering and Design,2009,239(10): 2022-2034.
    [74]姚宗,陈刚,杨建民等.流速分层流场中细长柔性立管涡激振动试验研究[J].上海交通大学学报,2009,43(8):1273-1279.
    [75]Umeda S, Yang W J. Interaction of von Karman vortices and intersecting main streams in staggered tube bundles[J]. Experiments in Fluids,1999,26:389-396.
    [76]Talebi M, Shirani E, Ashrafizaadeh M. Large Eddy Simulations of Turbulent Flow Across Tube Bundle Using Parallel Coupled Multiblock Navier-Stokes Solver[J]. Journal of Applied Sciences,2005,5(9):1674-1687.
    [77]Gabbai R D, Benaroya H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J]. Journal of Sound and Vibration,2005,282:575-616.
    [78]Willden R H J, Graham J M R. CFD simulations of the vortex induced vibrations of model riser pipes, Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, OMAE05, Halkidiki, Greece,3,837-846.
    [79]谭波,王嘉松,谷斐.利用分离盘控制隔水管涡激振动的数值模拟[J].水动力学研究进展,2009,24(1):43-48.
    [80]Sigrist J F, Broc D. Homogenisation method for the modal analysis of a nuclear reactor with internal structures modelling and fluid structure-interaction coupling[J]. Nuclear Engineering and Design,2007,237(4):431-440.
    [81]Sigrist J F, Broc D. Homogenisation method for the dynamic analysis of a complete nuclear steam generator with fluid-structure interaction[J]. Nuclear Engineering and Design,2008,238(9):2261-2271.
    [82]张若京.统一的管阵流固耦合均匀化模型[J].力学学报,1997,29(2):220-223.
    [83]袁振伟,褚福磊,王三保.横向振动圆柱体在流体中的动力学特性[J].工程力学,2006,23(8):49-52.
    [84]赵鹏良,王嘉松,蒋世全等.海洋立管涡激振动的流固耦合模拟计算[J].海洋技术,2010,29(3):73-77.
    [85]刘巨保,罗敏,王琳等.管道内旋转细长梁的固液耦合方法研究[J].工程力学,2011,28(4):251-256.
    [86]刘巨保,张强,霍喜军等.细长管与管内外流体流固耦合的计算[J].化工机械,2010,37(4):418-421.
    [87]Longatte E, Verreman V, Souli M. Time marching for simulation of fluid-structure interaction problems[J]. Journal of Fluids and Structures,2009,25(1):95-111.
    [88]宋少云.多场耦合问题的协同求解方法研究与应用[D].武汉:华中科技大学,2007.
    [89]Boivin C, Ollivier C. A toolkit for numerical simulation of PDEs:I. Fundamentals of generic finite-volume simulation[J]. Computer Methods in Applied Mechanics and Engineering,2003,192(9/10):1147-1175.
    [90]Boivin C, Ollivier C. A toolit for numerical simulation of PDEs:Ⅱ. Solving generic multiphysics problems[J]. Computer Methods in Applied Mechanics and Engineering, 2004,193(36/38):3891-3918.
    [91]宋少云.多场耦合问题的分类及其应用研究[J].武汉工业学院学报,2008,27(3):46-49.
    [92]王林翔,Roderick V N.热弹性动力学耦合问题的微分代数方法[J].应用数学和力学,2006,27(9):1036-1046.
    [93]宋少云.多场耦合问题的建模与耦合关系的研究[J].武汉工业学院学报,2005,24(4):21-23.
    [94]骆祖莹.电热分析研究的现状与展望[J].计算机辅助设计与图形学学报,2009,21(9):1203-1211.
    [95]周跃庆,高忠科,武猛.移动式平板感应加热磁热耦合的数值模拟[J].材料热处理,2007,36(14):55-58.
    [96]周密,杨田,谢俊等.基于热-结构耦合效应的阀体可靠性分析[J].四川大学学报(工程科学版),2009,41(5):187-192.
    [97]魏钦伟,胡基士,董亮等.基于ANSYS的脉冲超导磁体电磁结构耦合分析[J].科学技术与工程,2009,9(15):4395-4397.
    [98]江召兵,沈庆,陈徐均等.ALE动网格法在流固耦合数值模拟中的应用[J].应用力学学报,2008,25(2):669-672.
    [99]陈煜,范秦寅,郭晨海等.柴油机气缸盖的热流耦合分析[J].机械设计与制造,2009,(7):211-213.
    [100]何天虎,田晓耕.半无限大体广义电磁热弹耦合的二维问题[J].应用力学学报,2009,24(3):343-347.
    [101]Felippa C A, Farhat C. Partitioned analysis of coupled mechanical systems[J]. Computer Methods in Applied Mechanics and Engineering,2001,190(24/25): 3247-3270.
    [102]宋少云,李世其.耦合场协同仿真中节点载荷插值的混合法[J].计算机仿真,2006,23(8):73-75.
    [103]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2008.
    [104]Dorfman A S. Heat transfer from liquid to liquid in a flow past two sides of a plate[J]. High Temperature,1970,8(3):515-520.
    [105]Chida K, Katto Y. Conjugate heat transfer of continuously moving surfaces[J]. International Journal of Heat and Mass Transfer,1976,19(5):461-470.
    [106]Dorfman A S, Renner Z. Conjugate Problems in Convective Heat Transfer:Review[J]. Mathematical Problems in Engineering,2009, ID 927350,1-27.
    [107]He M, Bishop P J, Kassab A J. A coupled FDM/BEM solution for the conjugate heat transfer problem[J]. Numerical Heat Transfer, Part B-Fundamentals,1995,28(2), 139-154.
    [108]Wansophark N, Malatip A, Dechaumphai P. Streamline upwind finite element method for conjugate heat transfer problems[J]. Acta Mechanica Sinica,2005,21(5):436-443.
    [109]Bialecki R A, Wecel G. Solution of conjugate radiation convection problems by a BEM FVM technique[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2004, 84(4):539-550.
    [110]Chen X, Han P. A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms[J]. International Journal of Heat and Fluid Flow,2000,21(4): 463-467.
    [111]Sucec J, Weng H Z. Unsteady conjugated duct heat transfer solution with wall heating[J]. Journal of Thermophysics and Heat Transfer,2002,16(1):128-134.
    [112]Yapici H, Albayrak B. Numerical solutions of conjugate heat transfer and thermal stresses in a circular pipe externally heated with non-uniform heat flux[J]. Energy Conversion and Management,2004,45(6):927-937.
    [113]Song W, Li B Q. Finite element solution of conjugate heat transfer problems with and without the use of gap elements[J]. International Journal of Numerical Methods for Heat and Fluid Flow,2002,12(1):81-99.
    [114]Betchen L, Straatman A G, Thompson B E. A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains[J]. Numerical Heat Transfer A,2006,49(6), 543-565.
    [115]Stein C F, Johansson P, Lennart L. An analytical asymptotic solution to a conjugate heat transfer problem[J]. International Journal of Heat and Mass Transfer,2002,45(12): 2485-2500.
    [116]Wang Q, Jaluria Y. Three-dimensional conjugate heat transfer in a horizontal channel with discrete heating[J]. Journal of Heat Transfer,2004,126(4):642-647.
    [117]Jo J C, Choi Y H, Choi S K. Numerical analysis of unsteady conjugate heat transfer and thermal stress for a curved piping system subjected to thermal stratification[J]. Journal of Pressure Vessel Technology,2003,125(4):467-474.
    [118]Al-Nimr M A. A simplified approach to solving conjugate heat transfer problems in annular and dissimilar parallel plate ducts[J]. International Journal of Energy Research, 1998,22(12):1055-1064.
    [119]张建生,卢玫,黄士铮等.三通道同心套管导热与对流耦合换热的数值模拟[J].上海理工大学学报,2004,26(5):438-442.
    [120]Pagliarini G, Barozzi G S. Thermal coupling in laminar flow double-pipe heat exchangers[J]. Journal of Heat Transfer,1991,113(3):526-534.
    [121]Cheng Z, Paraschivoiu M. Parallel computations of finite element output bounds for conjugate heat transfer[J]. Finite Elements in Analysis and Design,2003,39(7): 581-597.
    [122]Potter S E, Underwood C P. A modelling method for conjugate heat transfer and fluid flow in building spaces[J]. Building Services Engineering Research and Technology, 2004,25(2):111-125.
    [123]Ho S Y. A turbulent conjugate heat-transfer model for freezing of food products[J]. Journal of Food Science,2004,69(5):224-231.
    [124]漆波,李隆键,崔文智等.百叶窗式翅片换热器中的耦合传热[J].重庆大学学报(自然科学版),2005,28(10):39-42.
    [125]孙登兴,邓兆祥,王攀等.小型车用换热器的数值模拟与优化[J].重庆大学学报(自然科学版),2006,29(4):50-53.
    [126]江彦,高青,李明等.套管式地下换热器传热模型及其特性分析[J].吉林大学学报(工学版),2007,37(5):1034-1038.
    [127]刘春花,刘金平.翅片管式风冷冷凝器耦合传热的数值研究[J].浙江海洋学院学报(自然科学版),2008,27(3):306-320.
    [128]陶于兵,何艳玲,刘迎文.槽式太阳能集热器内的耦合换热特性研究[J].工程热物理学报,2009,30(9):1543-1545.
    [129]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [130]钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构,2008,14(1):3-15.
    [131]朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则[J].工程力学,2007,24(10):92-99.
    [132]Heil M, Hazel A L, Boyle J. Solvers for large-displacement fluid-structure interaction problems:segregated versus monolithic approaches[J]. Computational Mechanics, 2008,43(1):91-101.
    [133]Bathe K J, Zhang H. Finite element developments for general fluid flows with structural interactions[J]. International Journal for Numerical Methods in Engineering,2004, 60(1):213-232.
    [134]Degroote J, Bruggeman P, Haelterman R. Stability of a coupling technique for partitioned solvers in FSI applications[J]. Computers & Structures,2008,86(23): 2224-2234.
    [135]Sternel D C, Schafer M, Heck M. Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach[J]. Computational Mechanics,2008, 43(1):103-113.
    [136]Fabian D, Raul G, Srinivasan N. Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries[J]. Computer Methods in Applied Mechanics and Engineering,2004,193(45-47):4819-4836.
    [137]Huang W X, Sung H J. An immersed boundary method for fluid-flexible structure interaction[J], Computer Methods in Applied Mechanics and Engineering,2009, 198(33-36):2650-2661.
    [138]谢胜百,单鹏.两种浸入式边界方法的比较[J].力学学报,2009,41(5):618-627.
    [139]Zhao S Y, Xue M S. A direct-forcing fictitious domain method for particulate flows[J]. Journal of Computational Physics,2007,227(1):292-314.
    [140]Kwon Y W. Development of coupling technique for LBM and FEM for FSI application[J]. Engineering Computations,2006,23(7-8):860-875.
    [141]Carla Antoci, Mario Gallati, Stefano Sibilla. Numerical simulation of fluid-structure interaction by SPH[J]. Computers & Structures,2007,85(11-14):879-890.
    [142]Boer A D, Zuijlen A H, Bijl H. Review of coupling methods for non-matching meshes[J]. Computer Methods in Applied Mechanics and Engineering,2007,196(8): 1515-1525.
    [143]安效民,徐敏,陈士槽.多场耦合求解非线性气动弹性的研究综述[J].力学进展,2009,39(3):284-298.
    [144]Thevenaz P, Unser M, Blu T. Interpolation revisited[J]. IEEE Transactions on Medical Imaging,2000,19(7):739-758.
    [145]Cebral J R, Lohner R. Conservative load projection and tracking for fluid-structure problems[J]. AIAA Journal,1997,35 (4):687-692.
    [146]Smith M J, Cesnik C E, Dewey H H. Evaluation of some data transfer algorithms for noncontiguous meshes[J]. Journal of aerospace engineering,2000,13 (2):52-58.
    [147]Michler C, Hulshoff S J, van Brummelen E H. A monolithic approach to fluid-structure interaction[J]. Computers & Fluids,2004,33(5-6):839-848.
    [148]Chen X Y, Zha G C. Fully coupled fluid-structural interactions using an efficient high resolution upwind scheme[J]. Journal of Fluids and Structures,2005,20(8): 1105-1125.
    [149]Farhat C, Kristoffer G, Geuzaine P. Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity[J]. Computer Methods in Applied Mechanics and Engineering,2006, 195(17/18):1973-2001.
    [150]Zhang A, Suzuki K. A comparative study of numerical simulmions for fluid-structure interaction of liquid-filled tank during ship collision[J]. Ocean Engineering,2007, 34(5):645-652.
    [151]赵福君,孙建刚,赵晓磊.15×104m3储罐的动特性分析[J].世界地震工程,2008,24(3):74-78.
    [152]Hansson P A, Sandberg G. Dynamic finite element analysis of fluid-filled pipes[J]. Computer Methods in Applied Mechanics Engineering,2001,190(24):3111-3120.
    [153]陈明,蒲家宁.充液管道流固耦合模型的时空二阶Godunov型解[J].中国机械工程,2008,20(11):1347-1351.
    [154]Girodroux L R, Grisval J P, Guillemot S. Comparison of static and dynamic fluid-structure interaction solutions in the case of a highly flexible modem transport aircraft wing[J]. Aerospace Science and Technology,2003,7(2):121-133.
    [155]曾宪昂,徐敏,安效民.基于CFD/CSD耦合算法的机翼颤振分析[J].西北工业大学学报,2008,26(1):79-82.
    [156]沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展[J].建筑科学与工程学 报,2006,23(1):1-9.
    [157]孙芳锦,张大明,殷志祥.大跨度柔性屋盖风振中流固耦合分析的强耦合方法[J].2009,29(2):179-183.
    [158]王翔,黄太刚,宁小倩.船舶与浮式码头碰撞过程仿真[J].船舶,2009,3:55-60.
    [159]同登科,薛莉莉,廉培庆.三孔单渗模型数值模拟研究[J].计算力学学报,2009,26(4):500-504.
    [160]李伯虎,柴旭东,侯宝存.一种基于云计算理念的网络化建模与仿真平台——“云仿真平台”[J].系统仿真学报,2009,21(17):5292-5299.
    [161]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [162]刘扬,刘巨保,罗敏.有限元分析及应用[M].北京:中国电力出版社,2008.
    [163]杨世铭,陶文铨.传热学(第四版)[M].北京:高等教育出版社,2008.
    [164]黄卫星,李建明肖泽仪.工程流体力学(第二版)[M].北京:化学工业出版社,2009.
    [165]郑津洋,董其伍,桑芝富.过程设备设计(第三版)[M].北京:化学工业出版社,2010.
    [166]GB151-1999.管壳式换热器[S].
    [167]刘巨保,丁皓江,张学鸿.间隙元在钻柱瞬态动力学分析中的应用[J].计算力学学报,2002,19(4):456-460.
    [168]尹辉俊,梁双翼,邵桂平.基于PC机群的有限元并行计算平台的搭建[J].中国科技信息,2006,(20):117-120.
    [169]庄礼深,吴子牛.流体力学分区算法及相关理论问题[J].计算物理,2006,23(3):253-265.
    [170]牛志伟,黄红女.Windows平台下机群并行编译环境配置[J].计算机技术与发展,2007,17(8):15-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700