两种金线莲生长及与内生真菌共生培养的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对两种金线莲组培苗的最佳生根培养基进行了初步研究,结果表明,台湾金线莲和福建金线莲组培苗最佳生根培养基配方分别为0.125倍MS+1.61mg·L-1NAA+1.50mg·L-1 IBA+2.20g·L-1活性炭和0.36倍MS+3.00mg·L-1NAA+1.50mg·L-1活性炭,优化验证试验组培苗平均生根数分别可达2.33条/株和2.45条/株,分别比对照多1.20条和1.30条。
     栽培基质筛选试验结果显示,腐殖土:蛭石(3:1)的混合栽培基质最适合两种金线莲组培苗的移栽,在该栽培基质中培养90d,台湾金线莲的成活率达96.67%,平均鲜重、干重及株高分别达1.197g/株、0.136g/株及11.302cm/株,福建金线莲的成活率达96.67%,平均鲜重、干重及株高分别达1.177g/株、0.131g/株及10.856g/株。
     野生金线莲在其整个生活史中都需要与真菌共生。我们利用这一特点,将分离自兰科植物的43株内生真菌回接到两种金线莲组培苗上,在琼脂培养基上筛选出10株对台湾金线莲和8株对福建金线莲有促生作用的兰科内生真菌。
     温室盆栽试验结果显示,AR18对两种金线莲的促生效果均达显著水平,栽培90d时,接种AR18的台湾金线莲平均鲜重和平均干重分别比对照提高15.080%和19.403%,接种AR18的福建金线莲平均鲜重和平均干重分别比对照提高17.155%和22.584%,接种AR14的福建金线莲平均鲜重和平均干重分别对照提高15.736%和18.652%。
     生理生化试验结果表明:在共培养的2个月内,随共培养时间延长,对照与接菌处理的4种酶活性均呈升高趋势,真菌的接种使这种上升趋势更为明显。金线莲体内大量元素中钾的含量最高,镁的含量最低,微量元素中铁的含量最高。不同真菌对两种金线莲的元素含量影响不同。
     次生代谢产物含量检测结果表明,人工栽培金线莲中Kinsenoside的含量随栽培时间延长而提高,促生真菌的接种会促进两种金线莲中Kinsenoside的积累。当栽培时间为8周时,接种AR18的台湾金线莲和福建金线莲中Kinsenoside的含量分别为同时期对照的1.97倍和1.24倍,接种AR14的福建金线莲中Kinsenoside的含量为同时期对照的1.63倍。
     在人工栽培的福建金线莲中,只检测到1种黄酮单体异鼠李素-3-O-葡萄糖苷,接种AR14对其含量有促进作用,而接种AR18对其含量则是先抑制后促进,但二者的促进作用均不显著。在人工栽培的台湾金线莲中,检测到4种黄酮单体成分,其中两种可定性为异鼠李素-3-O-葡萄糖苷及槲皮素。接种AR18对异鼠李素-3-O-葡萄糖苷的含量影响为先抑制后促进,而对槲皮素的含量影响一直为促进作用。
Anoetochilus roxburghii (Wall) Lindl. and A. formosanus, belonging to Orchidaceae, are rare medicinal plants. The most suitable root growth medium for A. formosanus was 0.125MS+1.61mg·L-1+1.50mg·L-1+2.20g·L-1 active carbon, and that for A. roxburghii was 0.36MS+3.00mg·L-1+1.50mg·L-1+0.80g·L-1 active carbon. After 60ds'culture on the root growth medium, the roots number of A. formosanus and A. roxburghii reached 2.33 and 2.45 respectively.
     A. formosanus and A. roxburghii were transplanted to flowerpots which filled with 5 kinds of culture substrate. The results showed that the most suitable substrate was humus soil:vermiculite (3:1). After 90ds'culture in the substrate, the average fresh weight, dry weight and height of A. formosanus were 1.197g,0.136g and 11.302cm, and that of A. roxburghii were 1.177g,0.131g and 10.856cm.
     Wild Anoetochilus plants are known to form a symbiotic relationship with fungi. Based on the characteristic, we cultured 43 strains of fungi from orchids together with seedlings of A. roxburghii and A. formosanus on agar medium for 2 months.10 strains could promote seedlings of A. formosanus growth and 8 strains could promote seedlings of A. roxburghii growth.
     To make sure the promotion activity of the fungi, we inoculated them to the roots of A. formosanus and A. roxburghii. After 90d, the average fresh weight and dry weight of A. formosanus inoculated with AR18 were increased by 15.08% and 19.403% respectively, compared with the non-inoculated ones, while the average fresh weight and dry weight of A. roxburghii inoculated with AR18 or AR14 were increased by 17.155%,22.584% and 15.736%,18.652% respectively, compared with the non-inoculated ones.
     The element of A. formosanus and A. roxburghii were measured by ICP. The results showed that K content was higher than other macro-elements, and the Mg content was the lowest. Fe content was the highest in the trace elements. Different fungi have different effect on the element contents of A. formosanus and A. roxburghii.
     The content of Kinsenoside and flavone of A. formosanus and A. roxburghii were detected by HPLC to study the effect of fungi on the secondary metabolite. The content of Kinsenoside in cultivated A. formosanus and A. roxburghii rising over time, and the inoculation of fungi increased the Kinsenoside content. The promotion effect of AR18 on A. roxburghii was more significant than on A. formosanus. The Kinsenoside content of the A. formosanus and A. roxburghii inoculated with AR18 were 1.97 and 1.24 times respectively as much as control at the 8th week. While, the promotion effect of AR14 on A. roxburghii was inferior to AR18, the Kinsenoside content of A. roxburghii inoculated with AR14 was 1.63 times as much as control at the 8th week.
     The kinds of flavonoid were different in A. formosanus and A. roxburghii, and it didn't change with fungi inoculation. Only Isorhamnetin-3-O-β-D-glucopyranoside was detected in cultivated A roxburghii, and the inoculation with AR14 could increase its content while AR18 first suppress then increase its content.4 flavonoid were deteced in cultivated A. formosanus and 2 of them could be characterized as Isorhamnetin-3-O-β-D-glucopyranoside and Quercetin. AR18 first suppress then increase the content of Isorhamnetin-3-O-β-D-glucopyranoside, while it increases the content of Quercetin all the time.
引文
[1]刘润进,李晓林.《丛枝菌根及其应用》[M].北京:科学出版社,2000,3.
    [2]Peterson RL, Farpuhar ML. Mycorrhizas-Integrated development between roots and fungi [J]. Mycologia,1994,86(3):311-326.
    [3]金梁,赵洪.我国菌根研究进展及展望[J].应用与环境生物学报,2004,10(4):515-520.
    [4]宋经元.菌根真菌对两种药用石斛的生长发育和基因表达的影响[D].北京:北京协和医学院,2002:5.
    [5]Harley JL, Smith SE. The significance of mycorrhiza [J]. Mycological Research,1989, 92:129-139.
    [6]孙剑秋,郭良栋.药用植物内生真菌及活性物质多样性研究进展[J].西北植物学报,2006,26(7):1505-1519.
    [7]Allen M E, Boosalis M G. Effect of two species of VA Mycorrhizal fungi on drought tolerance of winter wheat [J]. New Phytol,1983,93:67-71.
    [8]Dankessian S, Brown M S. Relationship of mycorrhizal growth enhancement and plant growth with soil water and texture [J].Plant And Soil,1986,94:439-443.
    [9]Bethlenfalvay G J, Thomas R S. et al. Mycorrhizae in stressed environments Effect on plant growth, endophyte development, soil stability and soil water in Whitehead, E. E Ed Arid Lands [J]. Today and Tomorrow London. Belhaven,1985,1015-1029.
    [10]Subramanian K S, Charest C, et al. Effects of arbuscular mycorrhizae on leaf water potential, sugar, and P content during drought and recovery of maize [J]. Can. J. Bot,1997,75:1582-1591.
    [11]陈辉,唐明.杨树菌根研究进展[J].林业科学,1997,33(2):181-188.
    [12]唐明,陈辉.丛枝菌根真菌(AMF)对沙棘抗旱性影响[J]. 林业科学,1999,35(3):48-52.
    [13]唐明,薛萐.AMF提高沙棘抗旱性的研究[J].西北林学院学报,2003,18(4):29-31.
    [14]王维华,李敏.AM真菌对生姜某些生理指标的影响[J].莱阳农学院学报,2003,20(3):175-177.
    [15]MARSCHNER H, ROMHELD D J. Role of root growth, arbuscular mycorrhiza and root exudates for the efficiency in nutrient acquisition [J]. Field Crops Res,1998,56:203-207.
    [16]DIAZ G, AZCON A C, HONRUBIA M. Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides [J]. Plant and Soil,1996, 180:241-249.
    [17]GILDON A. TINKER P B. Interactions of vesicular—arbuscular mycorrhizal infection and heavy metals in plants. Ⅱ [J]. The effects of infection on uptake of copper. New Phyto1,1983,95: 263-268
    [18]LI X L, GEORGE E. Extension of the phosphorus depletion zone in VAM white clover in a calcareous soil [J]. Plant soil,1991,136:41-48.
    [19]u x L, GEORGE E, MARSCHNER H. Acquisition of phosphorus and copper by VAM hyphae and root to shoot transport in white clover [J]. Plant soil,1991b,136:49-57.
    [20]LIU A, HAMEL C, et al. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at diferent P and micronutrient levels [J]. Mycorrhiza,2000,9:331-336.
    [21]唐振尧,何首林.丛枝菌根对柑橘吸收铁素效应研究初报[J].园艺学报,1990,17:257--262.
    [22]申鸿,刘于.AM真菌对锌污染土壤中玉米微量元素营养的影响[J].西南农业大学学报(自然科学版),2006,28(2):205-211.
    [23]Bowles D J. Defence-related proteins in higher plants [J]. Annual Review of Biochemistry,1990, 59:873-907.
    [24]李海燕,束怀瑞.VAM真菌诱导植物产生防御反应的生物化学及分子生物学基础[J].山东农业大学学报(自然科学版),2002,33(1):107-111.
    [25]O'Connoll R J, Brown I R. Immunocytochemical localization of hydrmyproline-rich glycoproteins accumulation in melon and bean at sites of resistance to bacteria and fungi [J]. Molecular Plant-Microbe Interactions,1990,3:33-40.
    [26]Spanu P, Boller T. Chitinase in roots of mycorrhiza Allium porrum:regulation and localization [J]. Planta,1989,177:447-455.
    [27]Volpin H, Elkind Y. A vesicular arbuscular mycorrhizal fungus Glomus intraradix induces a defence response in alfalfa roots [J].Plant Physiology,1994,104:683-689.
    [28]Vivienne Gianinazzi-Pearson, Eliane Dumas-Gaudot. Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi [J]. New Phytol,1996,133:45-57.
    [29]Lambus M R, Mehdy M C. Suppression of endochitinase,β-1,3 endoglucanase, and chalcome isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions [J]. Molecular Plant- Microbe Interactions,1993,6:75-83.
    [30]赵士杰,李树林.VA菌根真菌对旱作春小麦抗旱性的影响[J].内蒙古农业大学学报,2004,25(4):43-46.
    [31]赵听,阎秀峰.丛枝菌根真菌对植物次生代谢的影响[J].植物生态学报,2006,30(3):514-521.
    [32]杨涛,徐慧.分子生物学技术在菌根真菌研究中的应用[J].西部林业科学,2004,33(2):94-97.
    [33]潘超美,陈汝民.菌根真菌感染墨兰与建兰根状茎对呼吸速率和几种氧化酶活性的影响[J].热带亚热带植物学报,2002,10(1):46-50.
    [34]王发园,刘润进.生物因子对AM真菌多样性的影响[J].生态学报,2002,22(3):403-408.
    [35]Franken P, Requena N. Analysis of gene expression in arbuscular mycorrhizas:new approaches and challenges [J].New Phytologist,2001,150:517-523.
    [36]冯固,李晓林.施磷和接种AM真菌对玉米耐盐性的影响[J].植物资源与环境学报,2000,9(2):22-26.
    [37]贺学礼,赵丽莉.水分胁迫及VA菌根接种对绿豆生长的影响[J].核农学报,1999,14(5):290-294.
    [38]林鹤鸣,周玉芝,等.外生菌根真菌促进油松人工幼林生长的应用研究[J].沈阳农业大学学报,2001,32(4):274-277.
    [39]张小燕,黎勇,等. 外生菌根真菌的氮营养特性研究进展[J].中国农学通报,2004,20(5):167-169.
    [40]郭渊,唐明,等.外生菌根真菌对油松幼苗的接种效应[J].西北林学院学报,2006,21(5):116-119.
    [41]黄艺,姜学艳,等.外生菌根真菌接种和施磷对油松苗抗盐性的影响[J].生态环境,2004,13(4):622-625.
    [42]冯固,白灯莎,等.盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响[J].作物学报,2000,26(6):743-750.
    [43]Becard G, Douds DD. Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in presence of CO2 and flaonols [J]. Applied and Enviroment Microbiology,2000,58(3):821-825.
    [44]李晓林,冯固.丛枝菌根生态生理[M].北京:华文出版社,2001:158-163.
    [45]张勇,谢丽源,等.银杏根际丛枝菌根真菌生长与根系黄酮含量的相关性研究[J].菌物学报,2004,23(1):133-138.
    [46]董昌金,赵斌.影响丛枝菌根真菌孢子萌发的几种因素研究[J].植物营养与肥料学报,2003,9(4):489-494.
    [47]Tisserant B, Gianinazzi-Pearson V. In planta histochemical staining of fungal alkaline phophatase activity for analysis of efficient arbuscular mycorrhizal infections [J]. Mycol Res,2001,97 (2):245-250.
    [48]Zhao B, Trouvelot A, Gianinazzi S. Influence of two legume species on hyphal production and activity of two arbuscular mycorrhizal fungi [J]. Mycorrhiza,2001,7:179-185.
    [49]Smith S E, Gianinazzi-Pearson V. Phosphate uptake and vesicular arbuscular activity in mycorrhizal Allium cepa L.:Effect of photon irradiance and phosphate nutrition[J]. Aust J Plant Physiol,2000, 17:177-188.
    [50]Tisserant B, Schellenbaum L, et al. Influence of infection by an endomycorrhizal fungus on root development and architecture in Platanus acerifolia [J].Allionia,1992,30:171-181.
    [51]Guillemin J P, Orozco M O, et al. Influence of phosphate fertilization on fungal alkaline phosphatase and succinate dehydrogenase activities in arbuscular mycorrhiza of soybean and pineapple [J] Agri Ecosys Environ,1995,53:63-69.
    [52]冯海艳,冯固,等.植物磷营养状况对丛枝菌根真菌生长及代谢活性的调控[J].菌物系统,2003,22(4):589-598.
    [53]Petrini O.. Fungal endophytes of tree leaves [A].In Microbial ecology of leaves, eds:Andrews, J.H.& Hirano,S.S [C]..New York:Springer Verlag,1991:179-197
    [54]Schulz B, Boyle C. The endophytic continuum [J]. Mycological Research,2005,109(6):661-686.
    [55]谢丽华,徐焰平,等.茶树品种、叶片生育期和茶叶化学成分对内生真菌的影响[J].菌物研究,2006,4(3):35-41.
    [56]王剑文,郑丽屏,等.促进黄花蒿发根青蒿素合成的内生真菌诱导子的制备[J].生物工程学报,2006,22(5):831-834.
    [57]宁文,曹日强,等.真菌诱导物在植物次生代谢中的调节作用[J].植物生理学通讯,1993,29(5):321-324.
    [58]戴传超,余伯阳,等.大戟科四种药用植物及其内生真菌脂肪酸组分研究[J].中国中药杂志,2001,26(9):16-19.
    [59]史央,戴传超,等.大戟科4种药用植物内生真菌3种胞外酶活性的比较[J].植物资源与环境学报,2002,11(2):17-20.
    [60]Belesky D P, Stringer W C, Hill N S. Influence of endophyte and water regime upon tall accessions I. Growth characteristics [J].Ann.Bot. (London),1989,63:495-503.
    [61]West C P, Izekor E, Oosterhuis D M, et al. The effect of Acremonium coenophialum on growth and nematode infestation of tall fescue [J].Plant Soil,1988,112:3-6.
    [62]Arachevaleta M, Bacon C W, Hoveland C S, et al. Effect of the tall fescue on plant response to environmental stress [J].Agronomy Journal,1989,81:83-90.
    [63]Elbersen H W, Buck G W, et al. Water loss from tall fescue leaves is decreased by endophyte [J]. Arkansas Farm Res.,1994,43:8-9.
    [64]Elmi A A, West C P. Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue [J].New Phytol.,1995,131:61-67.
    [65]任安芝,高玉葆,等.干旱胁迫下内生真菌感染对黑麦草叶内几种同工酶的影响[J].生态学报,2004,24(7):1323-1328.
    [66]张集慧,王春兰,等.兰科药用植物的5种内生真菌产生的植物激素[J].中国医学科学院学报,1999,21(6):460-464.
    [67]Deepika Sharma, Rupan Kapoor, Ashok K. Bhatnagar. Arbuscular mycorrhizal (AM) technology for the conservation of Curculigo orchioides Gaertn.:an endangered medicinal herb [J]. World J Microbiol Biotechnol,2008,24:395-400.
    [68]Paula Pongrac, Katarina Vogel-Mikus,et al. Glucosinolate Profiles Change During the Life Cycle and Mycorrhizal Colonization in a Cd/Zn Hyperaccumulator Thlaspi praecox (Brassicaceae) [J]. J Chem Ecol,2008,34:1038-1044.
    [69]Zakaria M, Solaiman Lynette K. Abbott. Influence of arbuscular mycorrhizal fungi, inoculum level and phosphorus placement on growth and phosphorus uptake of Phyllanthus calycinus under jarrah forest soil [J].Biol Fertil Soils,2008,44:815-821.
    [70]Tim Wing Yam, Joseph Arditti. History of orchid propagation:a mirror of the history of biotechnology [J]. Plant Biotechnol Rep,2009,3:1-56.
    [71]吴静萍,郑师章.密花石斛菌根菌分离鉴定及其代谢产物的测定[J].复旦大学学报(自然科学版),1994,33(5):547-552.
    [72]唐明娟,郭顺星.内生真菌对台湾金线莲栽培及酶活性的影响[J].中国中药杂志,2004,29(6):517-520.
    [73]Solbritt A, Paul J, Bengt S. Effect of mycorrhizal colonization by Paxillus involutus on uptake of Ca and P by Picea abies and Betula pendula grown in unlimed and limed peat [J]. New Phytol,1996, 133:695.
    [74]郭秀珍.林木菌根应用技术[M].北京:中国林业出版社,1989:265-275.
    [75]Gianiazzi-Pearson V, Dumas-Gaudot E, Gollotte A, et al. Cellular and molecular defence-related root response to invasion by arbuscular mycorrhizal fungi. [J]. New phytol,1996,133:45.
    [76]Redman R S, Sheehan K B, Stout R G, et al. Thermotolerance Generated by Plant/Fungal Symbiosis [J].Science,2002,298:1581-1591.
    [77]钮旭光,韩梅,等.内生真菌对植物抗旱性的影响[J].生物技术,2006,16(3):93-95.
    [78]高微微,郭顺星.内生真菌菌丝及代谢物对铁皮石斛及金线莲生长的影响[J].中国医学科学院学报,2001,23(6):556-559.
    [79]周芳,高玉葆,等.缺磷对黑麦草—内生真菌共生体生长和根中酚含量的影响[J].植物生理学通讯,2003,39(4):321-324.
    [80]Malinowski D P, Belesky D P. Adaptations of endophyte-infected cool-season grasses to environmental stresses:Mechanisms of drought and mineral stress tolerance [J]. Crop Sci,2000, 40:923-940.
    [81]赵杨景,郭顺星,等.三种内生真菌与大花蕙兰共生对矿质营养吸收的影响[J].园艺学报,1999,26(2):110-115.
    [82]李能章,彭远义.植物内生菌研究进展[J].生物技术,2004,14(2):69-71.
    [83]文才艺,吴元华,等.植物内生真菌研究进展及其存在的问题[J].生态学杂志,2004,23(2):86-91.
    [84]杨民和,王国红.Ca2+对植物-微生物互作反应的调控[J].江西农业大学学报,2001,23(2):203-208.
    [85]Bush D S. Calcium regulation in plant cells and its role in signaling [A].Annu. Rev. Plant Phystol[C]. Plant Mol. Biol,1995,46:95-122.
    [86]Atkinson M M, Keppler L D, Orlandi E W. Involvement of plasma membrance calcium influx in bacterial induction of the K+/H+and hypersensitive responses in tobacco. Plant Physiol,1990, 92:215-221
    [87]Salzer P, Hebe G, Reitb A. Rapid reaction of spruce cells to elicitors from the ectomycorrhiza fungus Hebeloma crustuliniforme, and inactivation of these elicitors by extracellular cell enzymes [J] Planta,1996,198:118-126.
    [88]Salzer P, Hiibener B, Sirrenberg A. Differential effect of purified spruce chitinase and β-1,3-glucanases on the activity of elicitors from ectomycorrhizal fungi [J]. Plant Physiol.,1997, 114:957-968.
    [89]Chuangui Wang, Jianyong Wu, Xingguo Mei. Enhancement of Taxol production and excretion in Taxus chinensis cell culture by fungal elicitation and medium renewal [J]. Appl Microbiol Biotechnol,2001,55:404-410.
    [90]Anna Liisa Ruotsalainen, et al. Mycorrhiza does not alter low temperature impact on Gnaphalium norvegicum [J]. Ecophysiology,2004,140:226-233.
    [91]T. Fester, M. Kiess, D. Strack. A myorrhiza-responsive protein in wheat roots [J]. Mycorrhiza, 2002,12:219-222.
    [92]Steven Criquet, Erik Joner, et al. Anthracence and mycorrhiza affect the activity of oxidoreductases in the roots and rhizosphere of Lucerne (Medicago sativa L.) [J].Biotechnology Letters,2000,22(21):1733-1737.
    [93]Correa, R. J. Strasser& M. A.,et al. Are mycorrhiza always beneficial?[J]. Plant and Soil.,2006, 279:65-73.
    [94]Donna Glassop, Sally E. Smith, Frank W. Smith. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots [J].Planta,2005,222:688-698.
    [95]Ulrike Mathesius. Conservation and divergence of signaling pathways between roots and soil microbes-the Rhizobium-legume symbiosis compared to the development of lateral roots, mycorrhizal interactions and nematode-induced galls [J]. Scandinavia Journal of Forest Research., 2006,21:444449.
    [96]Gianinazzi-Pearson V, Denarie J. Red carpet genetic programmes for root endosymbioses [J]. Trends Plant Sci,1997,2:371-372.
    [97]Hirsch A M., Bhuvaneswari T V, Torrey J G and Bisseling. Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors[J]. Proc. Natl. Acad. Sci. USA,1989, 86,1244-1248.
    [98]K. Mulongoy, A. Callens, et al. Differences in mycorrhizai infection and P uptake of sweet potato cultivars (Ipomoea batatas L.) during their growth in three soils [J]. Biology Fertil Soils,1988,7: 7-10.
    [99]R.Balestrini, D. J. Cosgrove, P. Bonfante. Differential location of a-expansin proteins during the accommodation of root cells to an arbuscular mycorrhiza fungus[J]. Planta,2005,220:889-899.
    [100]D. Rhogy, M. Stommel, et al. Differential RNA accumulation of two b-tublin genes in arbuscular mycorrhizal fungi [J].Mycorrhiza.,2003,13:137-142.
    [101]Elisabeth W, Van der Heijden, et al. Does origin of mycorrhizal fungus or mycorrhizal plant influence effectiveness of the mycorrhizal symbiosis? [J]. Plant and Soil.,2001,230:161-174.
    [102]Sari Timonen, et al. Dynamics of cytoskeletal proteins in developing pine ectomycorrhiza [J] Mycorrhiza,1996,6:423-429.
    [103]Natalia Requena, Petra Mann, et al. Early development regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae:identification of GmGIN1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins [J].Plant and Soil,2002,244:129-139.
    [104]Slankis V. Soil factors influencing formation of mycorrhiza [J]. Annu Rev Phytopathol,1974, 12:437-457.
    [105]H. Wallander, J. E. Nylund, B. Sundberg. Ectomycorrhiza and nitrogen effects on root IAA:results contrary to current theory [J].Mycorrhiza,1992,1:91-92.
    [106]B. Wu, M Hayatsu, et al. Effect of ectomycorrhizae on the growth and uptake and transport of 15N-labeled compounds by Pinus tabulaeformis seedlings under water-stressed conditions [J]. Biol Fertil Soils,1999,28:136-138.
    [107]K. Sharma, P. C. Srivastava. Effect of vesicular-arbuscular mycorrhizae and zinc application on dry matter and zinc uptake of greengram (Vigna radiate L. Wilczerk) [J]. B iol Fertil Soils,1991, 11:52-56
    [108]H. A. Azaizeh, H. Marschner, et al. Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants [J].Mycorrhiza,1995,5:321-327.
    [109]G.N.Al-Karaki, A.Al-Raddad. Effects of arbuscular mycorrhiza fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance [J]. Mycorrhiza,1997, 7:83-88
    [110]Jingnan Liu, Lijun Wu, et al. Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch) [J]. Plant Growth Regul, 2007,52(1)29-39.
    [111]Abeles FB, Morgan PW,et al. Ethylene in plant biology [A].2nd edn.1992 [C].Academic, New York.,170-171.
    [112]Andre Freire Cruz, Takaaki Ishii, et al. Effects of arbuscular mycorrhizal fungi on tree growth, leaf water potential, and leves of 1-aminocyclopropane-1-carboxylic acid and ethylene in the roots of papaya under water-stress conditions [J].Mycorrhiza.,2000,10:121-123.
    [113]Smith S E, Gianinazzi-Pearson P. Physiological interactions betweem symbionts in vesicular-arbuscular mycorrhizal plants. Rev. Plant Physiol [J]. Plant Mol.Biol,.1988,39:221-244.
    [114]Susan J. Barker, Nicholas J. Larkan. Molecular approaches to understanding mycorrhizal symbioses [J]. Plant and Soil,2002,244:107-116.
    [115]Delp G, Rosewarne G, et al. The molecular route to understanding VAM symbiosis [J].In Mycorrhizae:A modern Laboratory Manual. Ed. A Varma. pp,1998,327-352.
    [116]Rosewarne G, Barker S J, et al. Production of near synchronous fungal colonization in tomato for developmental and molecular analyses of mycorrhiza [J]. Mycol. Res,1997,101:966-970.
    [117]Murphy P J, Langridge P, et al. Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices [J]. New Phytol,1997,135:291-301.
    [118]Rosewarne G M. Molecular characterization of the vesicular arbuscular mycorrhizal symbiosis in Lycopersicon esculentum [D]. Mill. Ph. D. Thesis. The University of Adelaide, South Australia. 1998,78-85
    [119]Delp G, Smith S E, et al. Isolation by differential display of three cDNA coding for proteins from the VA mycorrhizal fungus G. intraradices [J]. Mycol. Res,2000,104:293-300.
    [120]Bothe H, Klingner A, et al. Biochemical approaches to the study of plant-fungal interactions in arbuscular mycorrhiza [J]. Experientia,1994,50:919-925.
    [121]Burleigh S H. Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscularmycorrhizas [J].Plant Sci,2001,160:899-904.
    [122]Gianinazzi-Pearson V. Plant cell responses to arbuscular mycorrhizal fungi:getting to the roots of the sumbiosis [J]. Plant Cell,1996,8:1871-1883.
    [123]Harrison M J. Biotrophic interfaces and nutrient transport in plant/fungal symbioses [J]. J. Exp. Bot,1999b,50:1013-1022.
    [124]Harrison M J. Molecular and cellular aspects of the arbuscular mycorrhizal sumbiosis [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol,1999a,50:361-389.
    [125]Barker S J, Taugu D, et al. Regulation of root and fungal morphogenesis in mycorrhizal symbioses [J].Plant Physiol.1998b,116:1201-1207.
    [126]Salzer P, Bonanomi A, et al. Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection [J]. Mol. Plant Microb. Interact,2000,13:763-777.
    [127]Delp G, Smith S E, et al. Isolation by differential display of three cDN As coding for proteins from the VA mycorrhizal fungus G.intraradices [J]. Mycol Res,2000,104:293-300.
    [128]Harrison M J, van Buuren M L. A phosphate transporter from the mycorrhizal fungus Glomus versiforme [J].Nature,1995,378:626-629.
    [129]Harrier L A. The arbuscular mycorrhizal symbiosis:a molecular review of the fungal dimension [J]. J. Exp. Bot.,2001,52:469-478.
    [130]Cullimore J, Denarie J. How legumes select their sweet talking symbionts [J]. Science,2003, 302:630-633.
    [131]Lum MR, Hirsch AM. Roots and their symbiotic microbes:strategies to obtain nitrogen and phosphorus in a nutrient limiting environment [J]. Plant Growth Regul,2002,21:368-382.
    [132]Fru hling M, Roussel H, et al. The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum [J]. Mol Plant Microbe Interact,1997,10:124-131.
    [133]Vieweg MF, et al. The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and non-legume plants [J]. Mol Plant Microbe Interact,2004, 17:62-69.
    [134]Kundu S, Trent JT, et al. Plants, humans and hemoglobins [J]. Trends Plant Sci,2003,8:387-393.
    [135]Sergelyes C, Mustardy L, et al. Nuclear localization of a hypoxia-inducible novel non-symbiotic hemoglobin in cultured alfalfa cells [J].FEBS Lett,2000,485-127.
    [136]Martin F. Vieweg, Natalija Hohnjec, et al. Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses [J]. Planta.,2005, 220:757-766.
    [137]Kristopher A. Blee, Anne J. Anderson. Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules [J]. Plant Molecular Biology,2002,50:197-211.
    [138]H. Roussel, D. van Tuinen, et al. Signalling between arbuscular mycorrhizal fungi and plants: identification of a gene expressed during early interactions by different RNA display analysis [J]. Plant and Soil.,2001,232:13-19.
    [139]Andre Frenzel, Nadine Tiller, et al. The conserved arbuscular mycorrhiza-specific transcription of the secretory lectin MtLec 5 is mediated by a short upstream sequence containing specific protein binding sites [J].Planta.,2006,224:792-800.
    [140]Facundo Rivera-Becerril, Diederik van Tuinen, et al. Molecular changes in Pisum sativum L. roots during arbuscular mycorrhiza buffering of cadmium stress [J]. Mycorrhiza,2005,16:51-60.
    [141]Baxter I, Tchieu J, et al. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice [J]. Plant Physiol,2003,132:618-628.
    [142]Smith SE, Smith FA, et al. Functional diversity in arbuscular mycorrhiza symbioses:the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses growth or total P uptake [J]. New Phytol.,2004,162:511-524.
    [143]Pazkowski U, Kroken S, et al. Rice phosphate transporters include an evolutionary divergent gene specifically activated in arbuscular mycorrhizal symbiosis [J]. Proc Natl Acad Sci USA.,2002,99: 13324-13329.
    [144]Nagy R, Karandashov V, et al. The characterization of a novel mycorrhiza-specific phosphate transporter from Lycopersicon esculentum and Solanum tuberosum [J]. Mycorrhiza.,2005, 17:249-258.
    [145]Schachtman DP, Reid RJ, et al. Phosphorus uptake by plants:from soil to cell [J]. Plant Physiol, 1998,116:447-453.
    [146]Benabdellah K, Azcon-Aguilar C, et al. Plasma membrance ATPase and H+transport activities in mycrosomal membrances from mycorrhizal tomato roots [J]. J Exp Bot,1999,50:1343-1349.
    [147]Murphy PJ, Langridge P, et al. Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices [J].New Phytol,1997,135:291-301.
    [148]Gianinazzi-Pearson V, Arnould C, et al. Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco [J]. Planta.,2000,211:609-613.
    [149]Waschke, D. Sieh, et al. Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungus Glomus intraradices [J]. Mycorrhiza,2006, 17:1-10.
    [150]Ruzi-Lozano JM. Abuscular mycorrhizal symbiosis and alleviation of asmotic stress. New perspectives for molecular studies [J].Mycorrhiza.,2003,13:309-317.
    [151]Rosa Porcel, Mannuel Gomez, et al. Impairment of NtAQP 1 gene expression in tobacco plants does not affect root colonization pattern by arbuscular mycorrhizal fungi but decrease their symbiotic efficiency under drought [J]. Mycorrhiza.,2005,15:417-423.
    [152]M. Gonzalez-Guerrero, C. Cano, et al. GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress [J].Mycorrhiza.,2007,20:290-299.
    [153]Eugenie Carnero Diaz, Francis Martin, et al. Eucalypt α-tubulin:cDNA cloning and increased level of transcripts in ectomycorrhizal root system [J]. Plant Molecular Biology,1996,31:905-910.
    [154]L. Brechenmacher, S. Weidmann, et al. Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions [J]. Mycorrhiza,2004,14:253-262.
    [155]M. Fieschi, G. Alloatti, et al. Membrane potential hyperpolarisation in vesicular arbuscular myconhizae of Allium porrum L.:a non-nutritional long-distance effect of the fungus [J]. Protoplasma.,1992,168:136-140.
    [156]Yoder JA, Zettler LW, et al. Water requirements of terrestrial and epiphytic orchid seeds and seedlings, and evidence for water uptake by means of mycotrophy [J]. Plant Science,2000, 156(2):145-150.
    [157]Umata-H. In vitro germination of Erythrochis ochobiensis (Orchidaceae) in the presence of Lyophyllum shimeji, an ectomycorrhizal fungus [J]. Mycoscience,1997,38(3):355-357.
    [158]Jurkiewicz A, Turnau K, et al. Heavy metal localization in mycorrhizas of Epipactis astrorubens (Hoffm). Besser (Orchidaceae) from zinc mine tailings [J].Protoplasma,2001,218 (3-4):117-124.
    [159]Smreciu EA, Currah RS. Symbiotic germination of seeds of terrestrial orchids of North America and Europe [J].Lindleyana.,1989,1:6-15.
    [160]Williamson B, G. Penetration and infection of orchid protocorms by Thanatephorus cucumeris and other Rhizoctonia isolates [J].Phytopath,1970,60:1092-1096.
    [161]Hadley G. Non-specificity of symbiotic infection in orchid mycorrhiza[J]. New Phytologist,1970, 69:1015-1023.
    [162]Clements MA. The conservation of Australian orchids [A]. In:Tan WK(ed) Proceedings of the 11th word orchid conference [C]. Interacional Press, Miami,1985,138-141.
    [163]Jackson RM, Mason PA. Mycorrhiza:Studies in Biology, no.159 [M].Camelot, Southampton, 1984,30-33.
    [164]Smith, S.E, Read, D.J. Mycorrhizal Symbiosis [J].San diego, CA:Academic Press,1997, 331-336
    [165]Li J Y, SIDHU R, FORD E J, et al. The induction of production in the endophytic fungus ——Periconia sp [J]. From Torreya grandifolia Journal of Industrial Microbiology and Biotechnology,1998,20:259-264.
    [166]Stierle A, Strobel G, et al. The search for a taxol-producing microorganism among the endophic fungi of the pacific yew, Taxus brevifolia [J]. Journal of Natrue Products,1995,58(9):1315-1324.
    [167]黄慧莲,刘贤旺,吴祥松.金线莲无根苗的壮苗促根试验研究[J].中国野生植物资源,2001,20(6):74-76.
    [168]中国科学院植物研究所.中国高等植物(第十三卷)[M].青岛:青岛出版社,2002,734-735.
    [169]黄小风,周志东,杨成.珍稀药用植物金线莲及其栽培技术[J].广东农业科学,2005,5:80-81.
    [170]陈裕,林坤瑞.金线莲生长发育与光照强度关系[J].福建热作科技,1996,21(4):22-23.
    [171]候宽昭.中国种子植物科属词典[M].北京:科技出版社,1998,32.
    [172]郑纯,黄以钟,季莲芳.金线莲文献考证、原植物及商品调查[J].中草药,1996,27(3):169-171.
    [173]郑纯,黄以钟,潘释.金线莲的生药鉴定[J].中药材,1997,20(11):522-524.
    [174]陈泽宇,江秉华,陈钢.金线莲快速繁殖的研究[J].中草药,1992,23(2):108-100.
    [175]范子南,范晓红,等.金线莲的离体培养[J].植物生理学通讯,1995,31(6):430-431.
    [176]王建勤,林兰英,陈钢.药用金线莲根状茎组培育苗研究[J].时珍国药研究,1995,6(1):36-37.
    [177]林俊芳,林俊扬.珍稀中草药金线莲快速微繁研究初报[J].中国中药杂志,1993,18(12):721-722.
    [178]王建勤,陈钢,林兰英.金线莲原球茎的组培诱导[J].中药材,1995,18(1):3-5.
    [179]陈钢,林兰英,王建勤.药用金线莲组培类原球茎研究初报[J].福建中医药,1994,25(4):23-24.
    [180]郑维鹏.金线莲组培与移栽技术研究[J].福建林学院学报,1995,15(4):337-341.
    [181]陈裕,林坤瑞.金线莲若干栽培技术研究[J].亚热带植物通讯,1994,23(1):46-51.
    [182]江海燕,王建.珍稀中草药金线莲的研究近况[J].中医药研究,1997,13(2):51-52.
    [183]于雪梅,郭顺星.金线莲与内生真菌共生培养体系的建立[J].中国中药杂志,2000,25(1):81-83.
    [184]王振登,杨春波.金线莲中微量元素及氨基酸的分析测定[J].福建中医学院学报,1993,3(2):100-101.
    [185]王建勤,林兰英,陈钢.组培金线莲与野生金线莲酣酶同工酶比较研究[J].福建中医药,1995,26(1):41.
    [186]张振压,陈裕,林坤瑞.花叶开唇兰营养体的结构[J].云南植物研究,1992,14(1):45-48.
    [187]吴海清,龚祝南.金线莲和银线莲的比较解剖学研究[J].江苏农学院学报,1996, 17(3):25-29
    [188]陈裕.金线莲若干栽培技术研究[J].亚热带植物通讯,]994,23(1):46-51.
    [189]陈远光.金线莲引种栽培试验初探[J].中国林副特产,1997,(3):7-9.
    [190]方金辉.金线莲的室内人工栽培技术[J].福建农业科技,1998,(5):41.
    [191]周兴.花叶开唇兰的初生培养及再生途径[J].广西科学,1999,6(2):195-197.
    [192]范子南.金线莲的组织培养研究[J].福建师范大学学报,1997,13(2):82-87.
    [193]陈泽宇.金线莲快速繁殖的研究[J].中草药,1992,23(2):108.
    [194]王建勤.金线莲原球茎的诱导与植株再生[J].植物学通报,1996,13(1):54-55.
    [195]陈钢.药用金线莲组织培养原球茎研究初报[J].福建中医药,1994,25(4):23-24.
    [196]李海鹰.影响花叶开唇兰原球茎与丛生芽形态建成、生根与移栽因素的试验研究[J].广西科学,1999,6(3):235--237.
    [197]吴坤林.金线莲快繁及工厂化生产中间试验[J].中药材,1997,20(12):595-597.
    [198]何云芳.金线莲组培快繁技术[J].浙江林学院学报,1999,16(2):170-174.
    [199]何云芳.金线莲组培苗的试管外生根和大田移栽技术[J].浙江林业科技,1998,18(2):22-25.
    [200]Yongqiang Fan, Yushi Luan, Lijia An, Kun Yu. Arbuscular mycorrhizae formed by Penicillium pinophilum improve the growth, nutrient uptake and photosynthesis of strawberry with two inoculum-types [J].Biotechnol Lett,2008,30:1489-1494.
    [201]梁文俐,陈荣进,江育人.台湾产金线莲之研究Ⅰ金线莲之活性研究[J].台湾科学,1989,43:47-49.
    [202]福建中医药研究所.福建药物志第二册[M].福州:福建科技出版社,1982:215.
    [203]中科院植物所.中国植物志第十七卷[M].北京:科学出版社,2002,221-225.
    [204]陈裕.金线莲的开花特性[J].亚热带植物通讯,1996,25(1):35-37.
    [205]关璟.金线莲质量研究[D].北京:北京协和医学院,2005:1.
    [206]蔡文燕,肖华山,范秀珍.金线莲研究进展[J].亚热带植物科学,2003,32(3):68-72.
    [207]吴青昌:中国本草原色图谱[M].台北:台湾药草出版社,1984:43.
    [208]Huang D D, Law R C S, Mark O T. Effects of tissue-cultured Anoectochilus formosanus HAY. Extracts on the arachnid- onate metabolism, Bot. Bull [J]. Academia Sinica,1991,32:113-119.
    [209]陈裕,徐文江,黄自强.复方金线莲胶囊治疗Ⅱ型糖尿病的初步研究[J]. Pharmaceutical Practice,2000,18(5):358-359.
    [210]Wang SY, Kuo YH, Chang HN. Profiling and characterization Antioxidant Activities in Anoectochilus formosa-nus Hayata [J]. J.Agric.Food.Chem,2002,50(7):1859-1865.
    [211]ITO A, Kasai R, Yasumoto k. Aliphatic acid aromatic glucosides from Anoectochilus koshunensis [J].Phytochem.,1993,38(5):1133-1137.
    [212]Xiao-Ming Du, Ning-Yi Sun, Takashi TAMURA. Higher Yielding Isolation of Kinsenoside in Anoectochilus and Its Anti-hyperliposis Effect [J]. Biol. Pharm. Bull,2001,24 (1):65-69
    [213]Yonghui Zhang, Jinyan Cai, Hanli Ruan. Antihyperglycemic activity of kinsenoside, a high yielding constituent from Anoectochilus roxburghii in streptozotocin diabetic rats [J]. Journal of ETHNOPHARMACOLOGY,2007,114:141-145.
    [214]唐明娟.Ⅰ菌根真菌在金线莲栽培种应用及其共生机理研究Ⅱ粉尘螨和黑麦草变应原决定簇及其全长基因克隆与表达[D].北京:北京协和医学院,2003:1.
    [215]黄德贵.金线莲组织培养与人工栽培研究Ⅱ芽的快速繁殖[J].福建热作科技,1994,19(1):1-10.
    [216]王玉英,高新一.植物组织培养技术手册[M].北京:金盾出版社,2006,96-100.
    [1]陈裕,林坤.野生花叶开唇兰、大斑叶兰资源调查研究初报[J].亚热带植物通讯,1990,(2):61-63.
    [2]唐明娟,孟志霞.内生真菌对福建金线莲栽培及酶活性的影响[J]中国药学杂志,2008,43(12).
    [3]郑纯.金线莲文献考证、原植物及商品调查[J].中草药,1996,27(3),169-170.
    [4]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001,33-40.
    [5]王钦德,杨坚.食品试验设计与统计分析[M].北京:中国农业大学出版社,2003:349-361.
    [6]金丕焕.医用统计方法[M].上海:复旦出版社,2003,97-105.
    [7]王玉英,高新一.植物组织培养技术手册[M].北京:金盾出版社,2006,96-100.
    [1]陈裕,林坤.野生花叶开唇兰、大斑叶兰资源调查研究初报[J].亚热带植物通讯,1990,(2):61.63.
    [2]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001,33-40.
    [3]金丕焕.医用统计方法[M].上海:复旦出版社,2003,97-105.
    [4]黄德贵.金线莲组织培养与人工栽培研究Ⅲ壮苗生根培养[J].福建热作科技,1994,19(2),1-5.
    [5]段玉云,曾黎琼.台湾金线莲的组织培养与快速繁殖[J].植物生理学通讯,2005,41(2),198.
    [1]蔡文燕,肖华山,范秀珍.金线莲研究进展(综述)[J].亚热带植物科学,2003,32(3):68-72.
    [2]何云芳,余有祥,裘丽珍,杨霞.金线莲组培苗的试管外生根和大田移栽技术[J].浙江林业科技,1998,18(2):22-25.
    [3]唐明娟,郭顺星.内生真菌对台湾金线莲栽培及酶活性的影响[J].中国中药杂志,2004,29(6):517-520.
    [4]黄小凤,周志东,杨成,袁志永,蔡楚雄,刘世平.珍稀药用植物金线莲及其栽培技术[J].广东农业科学,2005,5:80-81.
    [5]黄慧莲,刘贤旺,吴祥松,赖学文,张寿文.金线莲试管苗移栽试验研究[J].江西科学,2001,19(1):52-54.
    [6]陈裕.金线莲若干栽培技术研究[J].亚热带植物通讯,1994,23(1):46.
    [7]陈远光.金线莲引种栽培试验初探[J].中国林副特产,1997,3:7-9.
    [8]方金辉.金线莲的室内人工栽培技术[J].福建农业科技,1998,5:41.
    [9]朱小鹏.台湾金线莲的栽培技术[J].林业勘察设计(福建),2006,2:209-211.
    [10]黄德贵,陈振东.金线莲组织培养与人工栽植研究Ⅳ瓶苗移栽与低海拔平地试种[J].福建热作科技,1994,19(3):1-7.
    [11]D. M.PANDEY, K.W.YU, R.Z.WU, E.J. HAHN, K.Y.PEAK. Effects of different irradiances on the photosynthetic process during ex-vitro acclimation of Anoectochilus plantlets[J]. PHOTOSYNTHETICA,2006,44(3):419-424.
    [1]Hadley G. Non-specificity of symbiotic infection in orchid mycorrhiza[J]. New Phytologist. 1970,69:1015-1023.
    [2]Clements MA. The conservation of Australian orchids[M]. In:Tan WK (ed) Proceedings of the 11th word orchid conference. Interacional Press, Miami,1985,138-141.
    [3]郭顺星,陈晓梅,于雪梅.金线莲菌根真菌的分离及其生物活性研究[J].中国药学杂志,2000,35(7):443-445.
    [4]于雪梅.金线莲与内生真菌相互作用机理研究[J].北京:北京协和医学院,2000.
    [5]谭小明.七种珍惜濒危药用植物菌根生物学研究[D].北京:北京协和医学院,2005.
    [6]高微微,郭顺星.内生真菌菌丝及代谢物对铁皮石斛及金线莲生长的影响[J].中国医学科学院学报,2001,23(6):556-559.
    [7]张集慧,王春兰,郭顺星.兰科药用植物的5种内生真菌产生的植物激素[J].中国医学科学院学报,1999,21(6):110-115.
    [8]Masuhara G, Katsuya K:In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes Sinensis (Persoon) Ames. var. amoena (M. Beberstein) Hara (Orchidaceae)[J]. New Phytologist,1994,133:45-47
    [9]唐明娟.Ⅰ菌根真菌在金线莲栽培种应用及其共生机理研究Ⅱ粉尘螨和黑麦草变应原决定簇及其全长基因克隆与表达[D].北京:北京协和医学院,2003.
    [1]唐明娟.Ⅰ菌根真菌在金线莲栽培种应用及其共生机理研究Ⅱ粉尘螨和黑麦草变应原决定簇及其全长基因克隆与表达[D].北京:北京协和医学院,2003.
    [2]谭小明.七种珍稀濒危药用植物菌根生物学研究[D].北京:北京协和医学院,2005.
    [1]郭顺星,陈晓梅,于雪梅.金线莲菌根真菌的分离及其生物活性研究[J].中国药学杂志,2000,35(7):443-445.
    [2]唐明娟,孟志霞,郭顺星.内生真菌对福建金线莲栽培及酶活性的影响[J].中国药学杂志,2008,43(12).
    [3]David D D J.A. Procedure for the establishment of Glomus mosseae in dual culture with Ri T-DNA transformed carrot roots[J]. Mycorrhiza,1997,7:57-61.
    [4]唐明娟,孟志霞,郭顺星.菌根真菌对人工栽培金线莲糖类和无机元素的影响[J].中草药,2008,39(10):1565-1568.
    [1]唐明娟,孟志霞,郭顺星:内生真菌对福建金线莲栽培及酶活性的影响。中国药学杂志,2008,43(12)
    [2]David D. D. J.A:Procedure for the establishment of Glomus mosseae in dual culture with Ri T-DNA transformed carrot roots. Mycorrhiza,1997,7:57-61
    [3]Masuhara G, Katsuya K:In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes Sinensis (Persoon) Ames. var. amoena (M. Beberstein) Hara (Orchidaceae). New Phytologist,1994,133:45-47
    [4]Smericin EA, Currah RS:Symbiotic germination of seed of terrestrial orchids of north America and Europe. Lindleyana,1989,1:6-15
    [1]文才艺,吴元华,田秀玲.植物内生真菌研究进展及其存在的问题[J].生态学杂志,2004,23(2):86-91.
    [2]张集慧,王春兰,郭顺星.兰科药用植物的5种内生菌产生的植物激素[J].中国医学科学院学报,1999,21(6):460-465.
    [3]Lyons PC, Evans JJ, Bacon CW. Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue[J]. Plant Physiology,1990,92:726-732
    [4]Solbritt-Andersson, Paul-Jensen, Bengt Sonderstromo. Effects of mycorrhizal colonization by paxillus involutus on uptake of Ca and P by picea abies and Betula pendula grown in unlined and limed peat[J]. New phytol,1996,133:695-704
    [5]赵杨景,郭顺星,杜淑燕.三种内生真菌与大花蕙兰共生对矿质营养吸收的影响[J].园艺学报,1999,26(2):110-115.
    [6]陈世萍,高玉葆,梁宇.水分胁迫下内生真菌感染对黑麦草叶内保护酶系统活力的影响[J].应用于环境生物学报,2001,7(4):348-354.
    [7]唐明娟,孟志霞,郭顺星.内生真菌对福建金线莲栽培及酶活性的影响[J].中国中药杂志,2004,29(6):517-520.
    [8]吴霭民,顾本康,付正擎.内生真菌对棉花枯萎病的田间防效及增产作用[J].江苏农业科学,2000,(5):38-39.
    [9]蒋广策,林永成,周世宁.中国南海红树内生真菌No.1403次级代谢产物的研究[J].中山大学学报(自然科学版),2000,39(6):68-72.
    [10]杨海莲,孙晓璐,宋末.植物内生细菌的研究[J].微生物学通报,1998,25(4):224-227.
    [11]辛建华,傅振清.苯丙氨酸解氨酶、多酚氧化酶与甜瓜抗枯萎病的关系[J].石河了大学学报(自然科学版),1997,1(1):47-50.
    [12]谢世勇,卢同,李本金,种藏文,林时迟.苯丙氨酸解氨酶、过氧化物酶与甘薯青枯病的关系[J].2003,福建农业学报,18(4):236-238.
    [13]董金皋,樊慕贞,韩建民,刘书华,曹丽慧.芸苔链格胞菌毒素对白菜细胞膜透性、SOD酶和POD酶活性的影响[J].植物病理学报,1999,29(2):138-141.
    [14]王喜艳,张玉龙,张恒明,冯燕,佟倩,虞娜.盐胁迫下硅对黄瓜保护酶活性和质膜过氧化物的影响[J].西北农业学报,2009,18(1):221-224.
    [15]叶宝兴,朱新产.生物科学基础实验(植物类)[M].北京:高等教育出版社,2007:386-390.
    [16]薛俊杰,张震云,弓春瑞,乔文平,邵晓军.几种木本豆科植物的过氧化物酶和多酚氧化酶同工酶研究[J].山西农业大学学报,2000,20(1):64-67.
    [17]张玲,夏作理.决明子微量元素含量的分析测定[J].时珍国医国药,2008,19(8):1917-1918.
    [18]N. CH. CHATTOPANHYAY, B. NANDI. BIOLOGIA PLANTARUM(PRAHA)[M].1976, 18(5):321-326.
    [19]Jozef K, Ivan Kron, Miroslav R, Martin B. Effect of feeding precursors on phenylalanine ammonialyase activity and coumarin accumulation in leaves of Matricaria chamomilla L[J]. Plant Growth Regual,2007,52:9-15.
    [20]Kamel Ahmed Hussein Tartoura. Effect of abscisic acid on endogenous IAA, auxin protector levels and peroxidase activity during adventitious root initiation in Vigna radiate cuttings[J], 2001,23(2):149-156.
    [21]Woo-Jin Jung, Fazil Mabood, Alfred Souleimanov, Donald L. Smith. Effect of Chitin Hexamer and Thuricin 17 on Lignification-related and Antioxodative Enzymes in Soybean Plants[J]. Journal of Plant Biology,2008,51(2):145-149.
    [22]赖应辉,吴锦忠.金线莲中无机元素及糖类的分析[J].中药材,1997,20(2):84-85
    [23]唐明娟,孟志霞,郭顺星.菌根真菌对人工作栽培金线莲糖类和无机元素的影响[J].中草药,2008,39(10):1565-1568.
    [24]于雪梅.金线莲与内生真菌相互作用机理研究[D].北京:北京协和医学院,2000,85.
    [25]Hanlbrock K., Scheel D. Physiology and molecular biology of phenylpropanoid metabolism [J].Annual Review of Plant Physiology and Plant Molecular Biology.1989,40:347-369.
    [26]曾级晴.黄瓜幼苗子叶在低温下的光抑制及其恢复[J].植物生理学报,1997,23(1):15-20.
    [27]刘曼西.病原激发子对番茄阴离子过氧化物酶表达与反应性氧进发的诱导[J].植物生理学报,1997,23(3):220-226.
    [28]Ludwig-Muller J, Thermann P, Preper K etal. Peroxidase and chitinase isoenzymes activities during root infection of Chinese cabbage with Plasmodiophora brassicae[J]. Physiologia Plantarum,1994,90(4):661-670.
    [1]ITO A, Kasai R, Yasumoto k.Aliphatic acid aromatic glucosides from Anoectochilus koshunensis[J]. Phytochem.1993,38(5):1133-1137.
    [2]国家中医药管理局,中华本草编委会.中华本草第24卷[M].上海:上海科技出版社.1999:671.
    [3]Xiao-Ming Du, Ning-Yi Sun, Takashi TAMURA. Higher Yielding Isolation of Kinsenoside in Anoectochilus and Its Anti-hyperliposis Effect[J]. Biol. Pharm. Bull.2001,24(1):65-69.
    [4]Yonghui Zhang, Jinyan Cai, Hanli Ruan. Antihyperglycemic activity of kinsenoside, a high yielding constituent from Anoectochilus roxburghii in streptozotocin diabetic rats[J]. Journal of ETHNOPHARMACOLOGY.2007,114:141-145.
    [5]CA.1999, Vol.130.No.23316596t[P]
    [6]Du XM, Sun NY, Irino N. Glycosidic constituents from in vitro Anoectochilus formosanus[J]. Chem. Pharm. Bull..2000,48(11):1803-1804.
    [7]宁文,曹日强.真菌诱导物在植物次生代谢中的调节作用[J].植物生理学通讯,1992,29(5):321-329.
    [8]Jian Wen Wang, Zhen Zhang & Ren Xiang Tan. Stimulation of artermisinin production in Artemisia annua hairy roots by the elicitor from the endophytic Colletotrichum sp.Biotechnology Letters[J].2001,23:857-860.
    [9]李家儒,刘曼西.桔青霉诱导子对红豆杉培养细胞中紫杉醇生物合成的影响[J].植物研究,1998,18(1):81-83.
    [10]Zhao J., Fujita K., Yamada J., Sakai K. Improved beta-thujaplicin production in Cupressus Iusitanica suspension cultures by fungal elicitor and methyl jasmonate. Appl[J]. Microbiol. Biotechnol.,2001a,55(3):301-305.
    [11]江东福,马萍,张玲琪.龙血树真菌群及其对血竭形成的影响[J].云南植物研究,1995,17(1):79.
    [12]江东福,马萍,杨靖.9568D镰孢霉作用于死态龙血树形成血脂的研究[J].应用生态学报,2003,14(3):477-478.
    [13]Saad I., Diaz E., Chavez I., Reyes-Chilpa R., Rubluo A., Jimenez-Estrada M.. Antifungal monoterpene production in elicited cell suspension cultures of Piqueria trinervia[J]. Phytochemistry,2000,55(1):51-57.
    [14]Stierle A, Strobel G, Stierle D. Taxol and taxaneproduction by Taxanyces andreanae, an endophytic fungus of Pacific yew[J].Science,1993,260(5105):241-216.
    [15]Strobel G A, Hess W M. Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity[J]. ChemBiol,1997,4(7):529-536.
    [16]Wang J, Li G, Lu H. Taol from tuercularin sp strain TF5, an endophytic fungus of Taxusm airei[J]. FEMS Microbiol Lett,2000,193(2):249-253.
    [17]Shrestha K, Strobel G A, Shrivastava S P. Evidence for paclitaxel from three new endophytic fungi of Himalayan yew of Nepa[J]. PlantaMed,2001,67(4):374-376.
    [18]杨显志,张玲琪,郭波.一株产长春新碱内生真菌的初步研究[J].中草药,2004,35(1):805-807.
    [19]Wagenaar M M, Corw in J, Strobel G. Three new cytochalasins production by an endophytic fungus in the genus Rhinocladiella[J]. J Nat Prod,2000,63(12):1692-1695.
    [20]张玲琪,王海昆,邵华.美登木内生真菌产抗癌物质球毛壳甲素的分离及鉴定[J].中国国药学杂志,2002,37(3):172-175.
    [21]刘吉华,余伯阳.喜树内生真菌的分离及其抗肿瘤活性代谢产物的筛选方法[J].植物资源与环境学报,2004,13(4):6-10.
    [22]李海燕,曾松荣.一种桃儿七内生真菌的分离初报[J].云南大学学报(自然科学版), 1999,21(3):2-3.
    [23]曾松荣,邵华,张玲琪.从南方山荷叶分离出一株产鬼臼毒素类似物的内生真菌[J].微生物学杂志,2004,24(4):1-2.
    [24]郭仕平,蒋斌,苏莹珍.川八角莲内生真菌产鬼臼素类似物的初步研究[J].生物技术,2004,4(2):55-57.
    [25]Krohn K, Florke U. Metabolites from fungi 15. New isocoumarins from an endophytic fungus isolated from the Canadian thistle cirsium arvense[J]. Nat Prod Lett,2001,5(5):353-361.
    [26]Kongsaeree P, Rabpal S. Antimalarial dihydroisocoumarins produced by Geotrichum sp., an endophytic fungus of Crassocephalum crepidioides[J]. Nat Prod,2003,6(5):709-711.
    [27]Zhou L G, Cao X D, Yang C Z. Endophytic fungi of Paris polyphylla var. yunnanensis and steroid analysis in the fungi[J]. Nat Prod ResDev,2004,16 (3):198-200.
    [28]姜广策,林永成,周世宁.中国南海红树内生真菌No 1403次级代谢物的研究[J].中山大学学报(自然科学版),2000,39(6):68-72.
    [29]Kumar D. In vitro studies of endophytic fungi from Tripterygium wilfordii with anti-proliferative activity on human peripheral blood mononuclear cells[J]. J Ethnopharmacol, 2004,94(2):295-300.
    [30]孙力军,陆兆新,别小妹.1株抗菌植物内生菌EJH-2菌株的分离和鉴定[J].中国微生态学杂志,2006,18(1):23-26.
    [31]林爱玉,邢晓科,郭顺星.4种药用半红树植物内生真菌的分离及其抗菌活性研究[J].中国药学杂志,2006,41(12):892-894.
    [32]Salituro G M, Pelaez F. Discovery of a small molecule insulin receptor activator[J]. Recent Prog Horm Res,2001,56(1):107-126.
    [33]Harpre J K, Ford E J. Pestacin:al,3-dihydroisobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities[J]. Tetrahedron,2003,59(14):2471-276.
    [1]何春年.福建金线莲化学成分的研究[D].北京,北京协和医学院,2004:1.
    [2]关璟.金线莲质量研究[D].北京,北京协和医学院,2005:1.
    [3]曹纬国,刘志勤,邵云.黄酮类化合物药理作用的研究进展[J].西北植物学报,2003,23(12):2241-2247.
    [4]周新,李宏杰.黄酮类化学物的生物活性及临床应用进展[J].中国新药杂志,2007,46(5):350-354.