用户名: 密码: 验证码:
淮河流域峒柏大别山区植被退化机制与生态修复模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以淮河流域桐柏大别山区为研究对象,综合运用地理信息学、生态学、森林资源管理学和水土保持学理论与方法,采用水土保持“3S”信息监测与地面监测、森林植被资源清查、植物群落样地调查、水土保持功能试验观测和社会访问调查等相结合的技术手段,开展植被退化机制与水土保持生态修复模式的研究。旨在阐明人为干扰下的植被退化类型及其结构与功能退化特征,揭示生态退化驱动机制与生态修复限制因子,进行生态修复适宜性评价与分区,提出水土保持生态修复模式与关键技术。为流域管理机构全面开展水土保持生态修复工作提供科学的决策与规划依据。获得以下主要研究结果与结论:
     (1)桐柏大别山区森林植被资源结构格局特征
     ①大别山区森林覆盖率较高为32.33%,但存在区域分布不均的问题。金寨县、霍山县、舒城县和新县、光山县、罗山县的森林覆盖率较高。
     ②大别山区有林地林种结构中,六安市用材林已成为面积比例最高第一大林种,占有林地的53.5%,而薪炭林资源却很少,占有林地的0.02%。由此可能产生的林地水土流问题不容忽视。
     ③虽然大别山区森林覆盖率较高,但防护林资源面积依然较低,土地覆盖率仅9.7%,占有林地的28.1%;水土保持林和水源涵养林资源偏少,两者土地覆盖率仅9.4%,占有林地的27.2%。总体的水土保持植被资源仍然不足。
     ④尽管桐柏大别山区经济林面积比例不是很高,占有林地的16.7%,但坡地水力与重力梯度较大,在缺乏必要水土保持工程和耕作措施的区域,林地生态退化和水土流失比较严重。
     ⑤大别桐柏山区的森林资源中,幼龄林和中龄林面积比例很大,占有林地的51%和37%%,但近熟林和成熟林较少,只占有林地的9.5%和2.5%,导致森林生态系统结构和功能脆弱。
     (2)典型植物群落结构与水文功能退化特征
     ①针对淮河流域大别山生态修复研究和实践的需求,提出在不同人为活动干扰下,山地丘陵区产生12种典型的植被退化类型;包括5种群落退化(逆向演替)类型和7种群落恢复(正向演替)类型。
     ②植物群落结构的演替主要取决于人为活动的干扰方式,不同干扰方式及其强度下,植物群落结构的退化或恢复特征都比较明显。在各种不合理的人为生产活动的强度干扰下,以顺坡耕作农田和经济林地的植被退化较严重,其次是樵采或放牧林地的植被退化。而封禁保护措施明显改善植物群落结构,例如实施生态林禁牧禁伐后,林地草本层盖度增加17.7倍,物种丰富度增加了52%,物种多样性指数增加了5倍。
     ③大别山植物群落的水文生态功能,受人为干扰方式的影响较大,在不同的人为活动干扰方式(土地利用方式)以及强度和频度作用下,各种植物群落水文功能具有明显不同的退化特点。林地樵采放牧、顺坡农田耕作及坡地经济林耕作群落的土壤容重分别达到1.71、1.70、1.65g/cm3;土壤分形维数分别为2.420、1.998、2.230;土壤非毛管孔隙度分别为5.75%、7.5%、8.15%。
     ④植物群落数量指标和水文指标之间相关性显著,相关系数均在0.72以上;群落总郁闭度与枯落物持水量和土壤总孔隙度、土壤分形维数和之间的相关性均较强,其相关系数分别为0.718、0.858和0.693。
     (3)桐柏大别山区生态脆弱性与生态退化驱动力
     ①不同土地覆被类型的生态脆弱性,以经济林地和耕地最高,残疏林地的次之,灌木林地和草地为一般,有林地最低为潜在脆弱。
     ②在土壤侵蚀影响因素中,人为因子是第一位的,而自然因子的驱动作用处于第二位;在影响区域土壤侵蚀的11个自然与人为因子中,“人均经济林面积”、“农村薪柴比例”、“人均粮食产量”和“年均降雨量”是名列前4位的主导驱动因子。
     ③人为活动不合理的强度干扰破坏是生态退化的主要原因,经济林开发、耕地垦殖、樵采放牧是生态退化的主导驱动力。
     (4)水土保持生态修复适宜性评价与分区
     ①依据桐柏大别山区生态退化的主导驱动因子以及生态修复限制因子,提出了由海拔高度、土地利用类型(植被覆盖类型)和地面坡度因子组成的生态修复适宜性评价与分区指标体系。
     ②在桐柏大别山区,按海拔高度因子划分为3个区域等级,分别是中山区(1001~1800m)、低山区(501~1000m)和丘陵区(101~500m);按土地利用方式和植被类型划分为6个土地利用/覆被类型,分别是水源生态林地、一般生态林地、经济林地、耕地、灌草地、裸岩地;将土地利用/覆被类型中的一般生态林地、山坡经济林地和山坡耕地,按地面坡度大于25度和小于25度划分为2个等级区域。
     ③针对桐柏大别山区水土保持生态修复研究目标和实际需求,构建由海拔高度、土地覆被类型、地面坡度共3个评价指标分级组合而成的27个生态修复适宜性评价单元体系,划分“适宜”、“暂不适宜”和“不适宜”3个生态修复适宜性等级,提出16个生态修复适宜性类型及其分区。
     (5)桐柏大别山区生态修复模式与关键技术
     ①针对水土保持生态修复实践的实际需求,将山地丘陵区划分出生态林草植被封禁、樵采与放牧林草地、农田垦殖坡耕地、经济林开发坡地4种水土保持生态修复区域类型。
     ②依据水土保持生态修复内涵和外延和生态修复适宜性分区,提出桐柏大别山区水土保持生态修复的2类“属性模式”、4类“区域模式”和12项“技术模式”,并提出各种技术模式的关键技术措施。
Taking Tongbo-Dabie Mountainous area in Huaihe River Basin as the research object, comprehensive application of theory and methods of geographical informatics, ecology, forestry resource management science and Soil and Water Conservation, integrated use technological means of water and soil conservation 3S information monitoring and ground monitoring, forest resource inventory, plant community survey, experimental observation of water and soil conservation function and community interviews, this dissertation studied the mechanism of vegetation degradation and ecological restoration mode. The aim of this paper is to elucidate vegetation degradation types, structure and functions degradation characteristics, to reveal the driving mechanism of ecological degradation and the limiting factor to ecological restoration, to make ecological restoration suitability assessment and zoning and to suggest ecological restoration mode and key technologies. The results and conclusions are as follows:
     (1) Structural pattern of forest vegetations resources of Tongbo-Dabie mountain area
     ①The forest coverage of Dabie mountain area is higher as 32.23%, but the distribution of the forest is not evenly. The forest coverage of Jinzhai County, Huoshan County, Shucheng County, Xin County, Guangshan County and Luoshan County is higher.
     ②The forest category structure of Dabie mountain area, The ratio of timber forest of Liuan city is the highest, as 53.5%, however, the fuelwood forest is less and the ratio is 0.02%. Water and soil loss of forest land caused by this situation can not be neglect.
     ③Although the forest coverage of Dabie mountain area is higher, the protection forest resources area is small. The ratio of protection forest to land is 9.7%, and to forest land is 28.1%. Soil and Water Conservation Forest and water conservation forest is less. The ratio of the two forest category to land is 9.4, and that to forest land is 27.2%. The general water and soil vegetation resources are scarce.
     ④Although the ratio of economic forestto forest land is not high, as 16.7, Water and gravity gradient of Slope land is high. In the area short of water and soil conservation engineer and tillage measure, ecological degradation and water and soil loss of the forest land are more serious.
     ⑤In the forest resources of Tongbo-Dabie Mountainous area, the ratio of young forest and middle age forest is high, the ratio to forest land is 51% and 37%, but the ration near-mature-forest and mature forest is less, the ratio to forest land is 9.5% and 2.5%. This situation cause fragile structure and function of forest ecosystems.
     (2) The structure and hydrological function degradation characteristics of typical plant community
     ①Aiming at the ecological restoration research and practice need, we suggest under different human activities there are 12 typical vegetation degradation types in mountain and hilly areas, including 5 community degradation(regressive succession) types,7 community recovery (positive succession) types.
     ②The plant community structure succession mainly depends on disturbed mode of human activities. In different disturbed mode and disturbed strength, the plant community structure degradation or recovery characteristics is oblivious. In all kinds intensive unreasonable human activities, the vegetation of downslope cultivation and economic forest land degrade most seriously, followed by wood chopping and grazing. Closing protection measures obliviously improves the community structure. For instance, implementation of forbidding grazing and banning deforestation to ecological forest, the herb layer coverage of forest land increased 17.7 times, species richness increased 52%, species diversity index increased 5 times.
     ③The hydrological function of plant community of Dabie mountain area is influenced more seriously by human activities. In different human activities, disturbance strength and frequency, the hydrological function of various plant community has different degradation characteristics. The bulk density of soil of forest land for wood chopping and grazing, downslope cultivation and economic forest reached 1.71、1.70、1.65g/cm3 respectively; Their soil fractal dimension was 2.42,1.998,2.23 respectively; their soil non-capillary porosity was 5.75%、7.5%、8.15% respectively.
     ④The plant community quantitative index and the hydrological function index had significant correlation, and correlation coefficient was all greater than 0.72; The canopy density and the water capacity of litter, soil porosity and soil fractal dimension had ad significant correlation, and correlation coefficient 0.718、0.858 and 0.693 respectively.
     (3) The ecological fragility and ecological degradation driving forces
     ①The decreasing order of ecological fragility of different land cover is economic forest land, cultivated land, open forest, shrub, grassland and forest land.
     ②Of the soil erosion factors, human factor is firstly, natural factor is secondly. Of the 11 natural and human affecting soil erosion factors, economic forest area per capita, the ratio of rural fuel wood, food production per capita and mean annual precipitation make the top four.
     ③Human unreasonable intensive disturbance activity is the main ecological degradation factors, and economic forest development, cultivated land development, wood chopping and grazing are the main ecological degradation forces.
     (4) Water and soil conservation ecological restoration suitability assessment and zoning
     ①According to the leading driving force of ecological degradation and the limiting ecological restoration factors, we suggest a Water and soil conservation ecological restoration suitability assessment and zoning index system which is composed of altitude, land use type(vegetation cover type) and slope.
     ②In the Tongbo-Dabie Mountainous area, according to altitude, three site types are classified including middle-mountain (1001~1800m), low mountainous (501~1000m) and hilly area (101~500m). By the land use type and vegetation type,6 site types are classified including water source forest land, general ecological forest land, economic forest land, cultivated land, shrub and grassland and naked rocks. Ecological forest land, economic forest land, cultivated slope land are further classified to 2 types:slope degree is more than 25°and slope degree is less than 25°
     ③Aiming at the ecological restoration research and practice need in Tongbo-Dabie Mountainous area, we constructed 27 ecological restoration suitability assessment unities system which was constructed by altitude, land use type(vegetation cover type) and slope. All unities were classified to suitability, temporary unsuitability and unsuitability. Sixteen ecological restoration suitability types and zones were proposed.
     (5) Ecological restoration mode and key technologies in the Tongbo-Dabie Mountainous
     ①Aiming at the ecological restoration practice need, mountain area and hilly area were classified into 4 kinds water and soil conservation ecological restoration site types. They are ecological forest and grassland vegetation, wood chopping and grazing land, cultivated slope land and economic forest development.
     ②According the intension and extension of water and soil conservation ecological restoration and ecological restoration suitability zoning, we proposed 2 types "attributes mode",4 types "site mode" and 12 "techniques mode" for water and soil conservation ecological restoration in the Tongbo-Dabie Mountainous. Further, key techniques for all kinds mode were suggested.
引文
安树青,洪必恭,李朝阳,等.紫金山次生森林林窗的植被和环境特征[J].应用生态学报,1997,8(3):245-249
    安树青,赵儒林.中国北亚热带次生森林植被的特征分析[J].南京大学学报(自然科学版),1991,27(2):323-331
    白莉萍,伏亚萍.城市污泥应用于陆地生态系统研究进展[J].生态学报,2009,29(1):416-426
    白文娟,焦菊英.黄土丘陵沟壑区退耕地主要自然恢复植物群落的多样性分析[J].水土保持研究,2006,3:28-33
    包维楷,陈庆恒.生态系统退化的过程及其特点[J].生态学杂志,1999,18(2):36-42
    陈怀顺,赵晓英.西北地区不同类型区生态恢复的途径与措施[J].草业科学,2000,17(5):65-71
    陈奇伯,陈宝昆,董映成等.水土流失区小流域生态修复的理论与实践[J].水土保持研究2004,4(3):160-170
    崔崴,崔秀萍.论退化草地与水土保持生态修复[J].水土保持研究,2005,12(1):101-104
    邓铭红.塔里木河下游应急输水植被恢复响应及生态修复研究[J].中国水利,2004,14:15-18
    丁圣彦,梁国付.近20年来河南沿黄湿地景观格局演化[J].地理学报,2004,59(5):653-661
    D.O. M eeker,等(李永宏译).顶极群落及其在植被分类上的应用[J].生态学进展,1989,6(2):116-119.
    董厚德.辽东山地“乱石窖”植被演替规律的初步研究[J].植物生态学与地植物学从刊,1965,5(1):117-130
    段青松,吴伯志,字淑慧.滇中地区小流域水土流失治理前后产流模式变化研究[J].水土保持研究,2006,13(2):58-60
    范玮燿,王孝安,汪超,等.黄土高原马栏林区主要植物种的生态位研究[J].西北植物学报,2006,26(1):157-164
    高拯民,张福珠.环境中氮循环与氟污染研究现状与展望[J].环境科学,1983,4(4):7-13
    高之栋,刘成高,张文海,等.丘陵山地生态修复植物群落演替规律的研究[J].亚热带水土保持,2006,18(3):12-15
    巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报,2004,15(12):2292-2296
    韩崇选,杨学军,王明春,等.鼠类危害的环境生态修复探讨[J].西北林学院学报2005,20(4):124-128
    何长高.关于水土保持生态修复工程中几个问题的思考[J].中国水土保持科学,2004,2(3):99-101
    侯扶江,南志标,肖金玉,等.重牧退化草地的植被、土壤及其耦合特征[J].应用生态学报,2002,13(8):915-922
    胡根华.关于加快江西省旅游区水土保持生态修复技术研究的思考[J].中国水土保持科学,2004,2(3):108-110
    胡良军,邵明安.黄土高原植被恢复的水分生态环境研究[J].应用生态学报,2006,13(8):1045-1048
    华生.植被演替研究中的若干问题[J].植物学报,1977,21(2):98-103
    黄进勇,严力蛟,王兆骞.红壤小流域不同土地利用方式下的水土流失特征[J].浙江大学学报(农业与生命科学版),2002,28(1):78-82
    黄奕龙,陈利顶,傅伯杰,等.黄土丘陵小流域沟坡水热条件及其生态修复初探[J].自然资源学报,2004,19(2):183-190
    黄志霖,傅伯杰,陈利顶.恢复生态学与黄土高原生态系统的恢复与重建问题[J].水土保持学报,2002,16(3):122-125
    黄自强.黄河流域水保生态修复实践及思考[J].中国水利,2004,14:10-14
    姬婧,刘富齐,张登明.平顶山市区采煤塌陷地治理现状与分区治理措施探讨[J].煤炭工程,2006,7:57-62
    江忠善,王志强,刘志.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究[J].水土保持研究,1996,3(2):84-97
    姜安福.永定县实施水土保持生态修复试点工程做法[J].福建水土保持,2004,16(2):27-29
    焦居仁.生态修复的探索与实践[J].中国水土保持,2003,1:10-12
    解明曙,吴秋丽,谌利斌等.实施陆地生态修复的科学观[J].中国水利,2004,5(8):33-34
    金家琪,何丙辉,吕树鸣.长江流域水土保持生态修复及其模式探讨[J].贵州林业科技,2005,33(2):11-14
    景金富,王恩义,严志达,等.污泥复混肥对土壤微生物区系影响的研究[J].科技通报,2000,16(4):316-319
    景可,申元村.黄土高原水土保持对未来地表水资源影响研究[J].中国水土保持,2002,1:12-15
    J.R.埃塞林顿(曲仲湘等译).环境和植物生态学[M].北京:科学出版社,1989
    李翠环,余树全,周国模.亚热带常绿阔叶林植被恢复研究进展[J].浙江林学院学报,2002,19(3):325-329
    李德新.放牧对克氏针茅草原影响的初步研究[J].中国草原,1980,3(2):1—8.
    李贵宝,尹澄清,林永标,等.城市污泥对退化森林生态系统土壤的人工熟化研究[J].应用生态学报,2002,13(2):159-162
    李日龙.水土保持生态修复试点项目区水土流失治理对策[J].黑龙江水利科技,2004,3(1):102-103
    李生宝,王占军,王月玲,等.宁南山区不同生态恢复措施对土壤环境效应影响的研究[J].水土保持学报,2006,20(4):20-23
    李万全.青海省黄河流域生态修复适宜性的初步探讨[J].水土保持研究,2005,12(6):68-71
    李兴东,宋永昌.常绿阔叶林次生演替的一种系统动力学模型[J].生态学报,1993,13(3):287-291
    李永宏.内蒙古锡林河流域羊草草原和大针茅草原在放牧影响下的分异与趋同[J].植物生态学与地植物学报,1988,12(3):189-196
    李裕元,邵明安.黄土高原北部紫花苜蓿草地退化过程与植物多样性研究[J].应用生态学报,2005,12:124-131
    李志,刘文兆,杨勤科,等.黄土高塬沟壑区小流域土地利用变化及其生态效应分析[J].应用生态学报,2007,6:127-134
    梁士楚.广西英罗湾红树植物群落的研究[J].植物生态学报,1996,20(4):310-321
    梁宗锁,左长清.简论生态修复与水土保持生态建设[J].中国水土保持,2003,4:12-13
    梁宗锁.生态修复在黄土高原水土保持中的作用[J].西北林学院学报,2003,18(1):20-24
    廖纯艳,蒲勇平.长江流域生态修复工程的意义及对策[J],人民长江,2003,34(11)37-38
    林鹏.植物群落学[M].上海:科学技术出版社,1986
    刘福臣,方静,黄怀峰.鲁中南低山丘陵区水土流失原因及治理措施[J].水土保持通报,2008,28(4):170-172
    刘高焕,刘俊卫,朱会义.基于GIS的小流域地块单元划分与汇流网络计算[J].地球科学进展,2002,21(2):139-145
    刘国彬,杨勤科,许明祥.水保生态修复的若干科学问题[J].中国水利.2004,6(16):31-42
    刘红玉.20世纪80年代以来扰力河流域湿地景观变化过程研究[J].自然资源学报2002,17(6):668-775
    刘利峰,毕华兴,李孝广,等.黄土高原的植被演替研究现状及发展趋势[J].干旱区资源与环境,2004,3:18-24
    刘瑞禄,周国富,龙成昌.赤水市水土保持生态修复工程生态效益评价研究[J].水土保持通报,2005,25(6):82-87
    刘慎鄂.高斯山植被地理的研究.博士论文,2003
    刘巍,吕亚泉.中国黑土地退化成因及生态修复学研究[J].东北水利水电,2006,24(1):59-61
    刘文杰,李庆军,张光明,等.西双版纳望天树林干热季不同林窗间的小气候差异[J].生态学报,2000,20(6):932-937
    刘贤赵,谭春英.黄土高原沟壑区典型小流域土地利用变化对产水量的影响[J].中国生态农业学报,2005,13(4):99-103
    卢玉东,张春梅,谭钦文.西南土石山区小流域水土保持生态修复监测研究[J].Chinese Agricultural Science Bulletin,2006,26:318-323
    陆静依.美国环保署水生生物资源生态恢复指导性原则[J].上海水务,2001,3(1)50-53
    毛德华,夏军,黄友波.西北地区生态修复的若干基本问题探讨[J].水土保持学报,2003,1:77-84
    毛德华,夏军,黄友波.西北地区生态修复对策探讨[J].水土保持通报,2003,23(3):11-15
    孟秦倩,蔡焕杰,王健,等.黄土高原坡面刺槐林土壤水分生态位特征分析[J].干旱 地区农业研究,2009,6:57-63
    莫剑锋,田昆,常凤来,等.黔滇桂岩溶山区退化土壤环境生态修复的探讨[J].贵州林业科技,2005,33(2):15-19
    潘继征,李文朝,陈开宁.滇池东北岸生态修复区的环境效应[J].湖泊科学,2004,2:68-74
    Peilou E. C.数学生态学[M].(第2版).卢泽愚译.北京:科学出版社.1991彭少麟,等.鼎湖山厚壳桂群落演替过程的组成和结构动态[J].植物生态学报,1998,22(3):245-249
    漆良华,张旭东,周金星,等.湘西北侵蚀小流域生态恢复适宜度与景观格局特征[J].山地学报,2009,5:127-134
    秦伟,朱清科,刘中奇,等.黄土丘陵沟壑区退耕地植被自然演替系列及其植物物种多样性特征[J].干旱区研究,2008,4:51-57
    曲仲湘,文振旺.琅琊山林木状况的分析[J].植物学报,1953,33(4):93-69
    宋孝玉,康绍忠,史文娟,等.长武黄土沟壑区不同下垫面条件农田产流产沙规律及其影响因素[J].水土保持学报,2000,2:28-31
    孙广友.中国湿地科学的进展与展望[J].地球科学进展,2002,15(6):665-672
    田家怡,张洪凯,薄景美,等.小清河有机化合物污染及其对污灌区生态系统的影响[J].生态学杂志,1993,2(4):23-28
    田立生,刘艳军,吴立军.天然混交林水土保持生态修复技术研究[J].水土保持研究,2006,13(3):137-139
    王伯荪,马曼杰.鼎湖山自然保护区森林群落的演变[A].中国科学院鼎湖山森林生态系统定位研究站和鼎湖山国家级自然保护区管理处.热带亚热带森林生态系统研究(第1集)[C].广州:广东科学技术出版社,1982.142-156.
    王伯荪,彭少麟.鼎湖山森林群落分析Ⅴ群落演替的线性系统[J].中山大学学报,1985,6(4):75-80
    王德铭,李辛夫,庄德辉,等.酸雨对水生生物影响的研究[J].生态学报,1989,9(1):77-83
    王德起,王霖琳,朱海坤,等.门头沟煤矿区生态修复功能及生态农业工程规划[J].农业工程学报,2007,11:157-164
    王继军,谢永生,彭河珊.生态经济学理论在环境恢复与重建中的应用[J].贵州林业科技,2004,32(2):1-8
    王进欣,张一平,马友鑫,等.干季晴天橡胶林林窗温度剖线分布特征[J].生态科学,1999,18(3):7-13
    王俊玲.结合退耕还林实施水土保持生态修复工程[J].甘肃林业,2004,2(4):16-17
    王凯博,陈美玲,秦娟,等.子午岭植被自然演替中植物多样性变化及其与土壤理化性质的关系[J].西北植物学报,2007,10:241-248
    王玉刚,李彦,肖笃宁.土地利用对天山北麓土壤盐渍化的影响[J].水土保持学报,2009,5:57-63
    王占军,蒋齐,刘华,等.宁夏干旱风沙区林药间作生态恢复措施与土壤环境效应响应的研究[J].水土保持学报,2007,21(4):90-94
    王治国.关于生态修复若干概念与问题的讨论[J].中国水土保持,2003,4(10):4-5
    温仲明,焦峰,赫晓慧,等.黄土高原森林边缘区退耕地植被自然恢复及其对土壤养分变化的影响[J].草业学报,2007,1:23-29
    吴后建,王学雷.中国湿地生态恢复效果评价研究进展[J].湿地科学,2006,4(4):304-310.
    吴佩林,鲁奇.我国水土流失发生的原因、危害和防治途径[J].山东师范大学学报(自然科学版),2004,19(3):55-58
    熊利民,钟章成.四川络云山森林群落的同期发生演替及其模型预测[J].生态学报,1991,11(1):49-54
    许炯心.黄土高原植被-降水关系的临界现象及其在植被建设中的意义[J].生态学报,2005,25(6):1233-1240
    严国安.武汉东湖水生植物群落的研究[J].植物生态学报,1997,21(4):319-327
    杨爱民,刘孝盈,李跃辉.水土保持生态修复的概念、分类与技术方法[J].中国水土保持,2005,(1):11-13
    杨爱荣,石青,陆兆华,等.北方农牧交错带退化草地生态恢复技术[J].滨州学院学报,2009,6:47-52
    杨光,王玉.试论植被恢复生态学的理论基础及其在黄土高原植被重建中的指导作用[J].水土保持研究,2000,7(2):133-135
    杨龙.梵净山黔桐林的结构与动态[J].植物生态学与地植物学从刊,1983,5(3):204—214.
    杨少林,孟菁玲.浅谈生态修复的含义及其实施配套措施[J].中国水土保持,2004,2(10):7-9
    杨涛,王得祥,周金星,等.陕北黄土丘陵沟壑区退耕地植物群落演替规律及物种多样性动态研究[J].西北林学院学报,2009,5:68-74
    杨文治.黄土高原土壤水资源与植树造林[J].自然资源学报,2001,16(5):433-438
    姚孝友.淮河流域生态环境脆弱区水土保持管理机制的研究与实践[J].水土保持研究,2003,1(4):257-261
    姚孝友.淮河流域水土流失特点及分区防治技术研究[J].水土保持研究,2003,3(5):6-11
    于秀波.我国生态退化、生态恢复及政策保障研究[J].资源科学,2002,24(1):72-76
    余国营,刘永定,丘昌强,等.滇池水生植被演替及其与水环境变化关系[J].湖泊科学,2000,12(1):73-81
    余新晓,张晓明,牛丽丽,等.黄土高原流域土地利用/覆被动态演变及驱动力分析[J].农业工程学报,2009,25(7):219-226
    岳明.陕北南部侧柏林演替时期的划分及其特征[J].植物生态学报,1998,22(4):327-335
    张飞,丁建丽,何祺胜.干旱区土壤盐渍化及其对生态环境的损害评估[J].自然灾害学报,2009,4:214-219
    张富,余新晓,陈丽华.小流域水土保持植物措施对位配置研究[J].水土保持通报,2008,2:45-49
    张汉雄,上官周平.晋陕宁黄土丘陵区生态修复与农林牧业持续发展仿真研究[J].生态学报,2006,1:578-586
    张家来.应用最优分割法划分森林群落演替阶段的研究[J].植物生态学与地植物学学报,1993,17(3):224-231
    张青峰,王九军,田鹏,等.黄土高原水土保持生态修复机理与模式研究[J].陕西农业科学,2005,5(6):58-60
    张庆费,徐绒娣.浙江天童常绿阔叶林演替过程的凋落物现存量[J].生态学杂志,1999,18(2):17-21
    张全发,郑重,金义兴.植物群落演替与土壤发展之间的关系[J].武汉植物学研究,1990,4:124-129
    张希彪.陇东黄土高原土地利用、覆盖变化及驱动力分析[J].干旱地区农业研究,2006,24(2):143-149
    张晓群.拟除虫菊醋农药对水生生态系统的影响[J].上海农学院学报,1988,6(1): 52-61
    张一平,窦军霞,刘玉洪,等.热带季节雨林林窗辐射特征研究[J].应用生态学报,2004,15(6):929-934
    章家恩,徐琪.生态系统退化的动力学解释及其定量表达探讨[J].地理科学进展,2003,22(3):251-259
    昭和斯图,祁永.内蒙古短花针茅草原放牧退化系列的研究[J].中国草地,1987,3(1):29-35
    赵慧颖,乌力吉,郝文俊.气候变化对呼伦湖湿地及其周边地区生态环境演变的影响[J].生态学报,2008,28(3):1064-1071
    赵丽娅,赵哈林.我国沙漠化过程中的植被演替研究概述[J].中国沙漠,2000,20:7-15
    赵世伟,赵勇钢,吴金水.黄土高原植被演替下土壤孔隙的定量分析[J].中国科学:地球科学,2010,2:287-296
    赵松龄.针茅草原放牧衰退演替阶段的模糊数学分类[J].植物学报,1982,24(4):366-373
    赵燮京,庞良玉,张建华,等.改善生态环境,防治长江上游水土流失[J].水土保持研究,1999,6(2):88-92
    赵勇钢,赵世伟,曹丽花,等.半干旱典型草原区退耕地土壤结构特征及其对入渗的影响[J].农业工程学报,2008,6:88-96
    赵志模.群落生态学原理与方法[M].重庆:科学技术文献出版社,1990
    朱清科,朱金兆.黄土塬面农林复合系统的生态位特征[J].中国水土保持科学,2003,1:28-32
    Allen M.E.. Mycorrhiza and rehabilitation of disturbed arid soil:processes and practices[J]. Arid Soil Research and Rehabilitation,1989,3:229-241
    Arias-Estevez M., Lopez-Periago E., Martinez-Carballo E., et al.. The mobility and degradation of pesticides in soils and the pollution of groundwater resources [J]. Agriculture, Ecosystems & Environment,2008,123(4):247-260
    Arvanitidou M., Kanellou K., Katsouyannopoulos V., et al.. Occurrence and densities of fungi from northern Greek coastal bathing waters and their relation with faecal pollution indicators[J]. Water Research,2002,36(20):5127-5131
    Bi H.X., Liu B., Wu J., et al. Effects of precipitation and land use on runoff during the past 50 years in a typical watershed in the Loess Plateau, China[J]. International Journal of Sediment Research,2009,24:352-364
    Bradshaw A.D. and Chadwick M.J. The restoration of land, the ecology and reclamation of derelict and degraded land. Environmental Pollution Series B, Chemical and Physical,1980, 4(2):322-331
    Cairns J.J.. Recovery and restoration of damaged ecosystems[M]. Charlottesvill:University Press of Virginia,1977,17-27
    Charles P.N.. Acid deposition in aquatic ecosystems:Setting limits empirically[J]. Environmental Management,1985,4:277-288
    Clements. Plant Succession:Analysis of the Development of Vegetation[Z]. Publication No. 242. Garnegie Institution of Washington, Washington D. C., U. S. A.,1916
    Curtis L.F. and James J.H.. Frost-heaved soils of Barrow, Rutland. Daubenmire R.. Ecology of Fire in Grasslands[J]. Advances in Ecological Research,1968,5:209-266
    Davis K.A.. "Restoration"-a misnomer. Science,2000,287(5456):1203
    Drury J. S. and Brown L. L.. Fractionation of carbon isotopes:The cyanex system:A liquid-liquid chemical exchange process[J]. Journal of Inorganic and Nuclear Chemistry,1973, 35(8):2897-2906
    Eeva T., Sorvari J., Koivunen V. Effects of heavy metal pollution on red wood ant (Formicas. str.) populations [J]. Environmental Pollution,2004,132(3):533-539
    Ferreira S.M., Kritinger J.J., Van D. P.G. et al.. An evaluation of habitat rehabitation on coastal dune forest in northern KwaZulu-Natal, South Africa[J]. Restoration Ecology,1996,4: 334-345.
    Forman R.T.T.. Land Mosaics[M]. Cambridge:Cambridge University Press,1995:1—498
    Giarratano J.C., Riley G. Expert systems:principles and programming[M].2nd edtion. Boston:PWS Publishing Company,1994
    Glenn D.C., Peet P.K., Veblen T.T. Plant succession:theory and prediction[M]. London: Chapman and hall,1992
    Henry C. P., Amoros C. and Roset N. Restoration ecology of riverine wetlands:A 5-year post-operation survey on the Rhone River, France[J]. Ecological Engineering, June 2002, 18(5):543-554
    Hobbs R. Restoration ecology:the challenge of social values and expectations [J]. Frontiers in Ecology and the Environment,2004,2(10):43-48
    Holl K.D.. Nectar resources and their influence on butterfly communities on reclaimed coal surface mines[J]. Restoration Ecology,1995,3:76-85
    Jackson L.L, Lopoukine D., Hillyard D.. Ecological restoration:a definition and comments[J]. Restoration Ecology,1995,3(2):71-75
    James K.A.B. and Edward B. B.. Structural Adjustment Programme, Deforestation and Biodiversity Loss in Ghana[J]. Environmental and Resource Economics,2004,3:337-366
    James M.O., David P.L., Christina M.R. et al.. Summer total phosphorus in lakes:A map of Minnesota, Wisconsin, and Michigan, USA[J]. Environmental Management,1988,6:815-825
    Johnstone I M. Plant invasion windows:a time-based classification of invasion potential[J]. Biological Review,1986,61:369-394
    Wiyo K.A., Kasomekera Z.M. and Feyen J.. Variability in ridge and furrow size and shape and maize population density on small subsistence in Malawi[J]. Soil and tillage research, 1999,51(1-2):113-119
    Kai J., Michael T., David M. et al.. Restoration ecology of river valleys[J]. Basic and Applied Ecology,2006,7(5):383-387
    Keane A.J. and Price W.G.. Statistical energy analysis of strongly coupled systems[J]. Journal of Sound and Vibration,1987,117(2):363-386
    Kim K.C. and Loren B.B.. Biodiversity loss and the taxonomic bottleneck:emerging biodiversity science[J]. Ecological Research,2006,6:794-810
    Kindscher K., Tleszen L.L. Floristic and soil organic matter changes after five and thirty-five years of native tall grass prairie restoration[J]. Restoration Ecology,1998,6:181-196
    Lamd D. Reforestation of degraded tropical forest lands in the Asia-Pacific region[J]. Journal of tropical forest science,1994,7(1):1—7
    Langforda A. N. and Buellb M.F.. Integration, Identity and Stability in the Plant Association[J]. Advances in Ecological Research,1969,6:83-135
    Lessios H.A. Reproductive periodicity of the echinoids. Diadema and Echinometra on the two coasts of Panama[J]. Journal of Experimental Marine Biology and Ecology,1981,50(1): 47-61
    Li Y.C., Liu C.X., Yuan X.Z. et al. Spatiotemporal features of soil and water loss in Three Gorges Reservoir Area of Chongqing[J]. J. Geogr. Sci.,2009,19:81-94.
    Lugo A.E. The future of the forest ecosystem rehabilitation in the tropics[J]. Environment, 1988,30(7):17-25
    Malanson G. P.. Linked Leslie matrices for the simulation of succession[J]. Ecological Modelling,1984,21(1-2):13-20
    Margalef T., Luque E., Ripoll A. et al.. Scheduling of parallel programs including dynamic loops[J]. Future Generation Computer Systems,1968,10(2):301-304
    McIntosh R.P. Succession and ecological theory. Forest Succession:Concepts and Application [M]. New York:Springer-Verlag,1982,10-23.
    Miyawaki A. Restoration of urban green environments based on the theories of vegetation ecology[J]. Ecological Engineering,1998,11(1-4):157-165
    Nichiols O.G., Nichiols F.M. Long-term trends in faunal recolonization after bauxite mining in the jarrah forest of southwestern Australia[J]. Restoration Ecology,2003,11:261—272
    Noble R.A., Robert A. and Robert I. K.. Configurational isomerization in sedimentary bicyclic alkanes[J]. Organic Geochemistry,1987,11(3):151-156
    Odum E.P. The strategy of ecosystem development[J]. Science,1969,164:262-270.
    Pardini G, Gispert M. and Dunjo G Runoff erosion and nutrient depletion in five Mediterranean soils of NE Spain under different land use[J]. The Science of the Total Environment,2003,309:213-224
    Percy K.E. and Ferretti M.. Air pollution and forest health:toward new monitoring concepts[J]. Environmental Pollution,2004,130(1):113-126
    Pham T.A., Carolien K., Simon R.B. et al. Water pollution by intensive brackish shrimp farming in south-east Vietnam:Causes and options for control[J]. Agricultural Water Management,2010,97(6):872-882
    Prach K., Prsek P., Smilauer P. Predition of vegetation succession in human-disturbed habitats using an expert systerm[J]. Restoration Ecology,1999,7 (1):15-23
    Prach K., Prsek P., Smilauer P.. Changes in species types during succession:a search for pattern[J]. Oikos,1997,79:201-205
    Saaty T.L.. Applications of analytical hierarchies[J]. Mathematics and Computers in Simulation,1979,21(1):1-20
    Sandhu H.S. and Blower L.. Acid-forming emissions in Alberta, Canada[J]. Environmental Management,1986,5:689-695
    Shvidenko A.Z., Nilsson S., Stolbovoi V.S. et al. Aggregated Estimation of Basic Parameters of Biological Production and the Carbon Budget of Russian Terrestrial Ecosystems:2. Net Primary Production[J]. Russian Journal of Ecology,2001,2:71-77
    Simmons M. T., Venhaus H. C. and Windhager S. Exploiting the attributes of regional ecosystems for landscape design:The role of ecological restoration in ecological engineering[J]. Ecological Engineering,2007,30(3):201-205
    Simpson E.H. Measurement of diversity [J]. Nature,1949,163:688
    Tyler S W, Wheatcrafu S W. Application of fractal mathematics to soil water retention estimation[J]. Soil Science Society of America Journal,1989,53:987-996
    Tyler S.W, Wheatcrafu S.W. Fractal scaling of soil particle size distributions:analysis and limitations[J]. Soil Science Society of America Journal,1992,56:362-369
    Weiermans J., Van A.R.J. Roads as ecological edges for rehabilitating coastal dune assemblages in northern KwaZulu-Natal, South Africa[J]. Restoration Ecology,2003, 11:43-49
    Whittaker R.H. and Levin S.A. The role of mosaic-phenomena in natural communities [J]. Theoretical Population Biology,1977,12:117-139
    Whittaker R.H.. Evolution and measurement of species diversity[J]. Taxon,1972,21:213-251
    Xu Y., Tang Q., Ma D.G. et al. De-farming and Ecological Restoration in the Loess Hilly-gully Region in Northern China[J]. Journal of Mountain Science,2006,2:145-153
    Young T.P. Restoration ecology and conservation biology[J]. Biological Conservation,2000, 92:73-83
    Zhang K., Miyachi S., Kurano N.. Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation[J]. Applied Microbiology and Biotechnology,2001,4:428-433

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700