不同配合力水稻恢复系及其F_1生理生化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以R402×G37杂交后代选育的农艺性状稳定且相近的F89、F196、F177、F184、F175和明恢63等恢复系,及其与珍汕97A、金23A、K17eA、中九A、协青早A等配组的Fl为材料,于2007-2009年先后观察分析了农艺性状及配合力,并就花药和花粉粒性状及稻穗枝梗和颖花分化退化特性、苗期根系养分吸收动力学参数及生育后期根系衰退特性、生育后期叶片光合特性及衰老特性、光合产物的运转与分配特性等4个方面进行了系统研究,旨在阐明高配合力恢复系在根系、叶片及花器官等方面应具有哪些关键的生理生化特征特性。主要研究结论如下:
     供试籼型三系水稻恢复系单株产量一般配合力(GCA)效应值排序为F89(4.48)>F196(2.83)>F177(0.16)>F184(-1.66)>F175(-2.34)>明恢63(-3.46)。
     单株产量一般配合力高的恢复系苗期根系吸钾能力较强,花粉量大、花粉活力高,花粉粒较大,颖花退化少,穗大粒多,单株产量较高;剑叶全展后相对电子传递速率(ETR)大,潜在最大光合效率(Fv/Fm)高;抽穗期剑叶SPS活力低,淀粉含量日变幅小。抽穗后干重颖花比较低,非调节性能量耗散的量子产量Y(NO)增加,Fv/Fm、Y(Ⅱ)下降,光合机构易受强光损伤发生光抑制,SOD活性增强,MDA含量不可逆增加,伴随剑叶叶绿素含量及RuBPC活力下降,净光合速率同步下降;成熟期气孔导度小、净光合速率低,转色好,不贪青。
     恢复系单株产量一般配合力与花药大小,N、P元素吸收动力学参数,抽穗期根系伤流量、颖花根流量、根系活力衰退值,剑叶全展时Y(Ⅱ)、抽穗期ETR,抽穗期剑叶无机磷含量及其日变幅、蔗糖含量及其日变幅、淀粉含量,RuBPC活力,抽穗后剑叶MDA含量、剑叶温度及气叶温差,剑叶全展至抽穗后20天SPAD值及净光合速率、蒸腾速率、气孔导度、胞间二氧化碳浓度关系不密切。
     单株产量一般配合力高的恢复系其F1苗期根系吸钾能力较弱,剑叶全展后叶绿素含量较低;抽穗期16:30无机磷与蔗糖含量呈显著负相关,12:30蔗糖含量高;颖花数多,具有大穗潜力;花药短小,花粉量较少;抽穗期Fo、Fm、F、Fm'低,SPAD值与净光合速率同步下降;灌浆盛期净光合速率低,干重颖花比低,不贪青,转色好。
Physiological and biochemical characteristics of the different combining ability restoring lines in rice were compared using F1s combined by restoring lines F89, F196, F177, F184, F175 (the restoring lines were the generations of R402×G37 and their agronomic characteristics were near to each other and stable) and Minghui63 with sterile lines Zhengshan97A, Jing23A, K17eA, ZhongjiuA and XueqingzaoA, such as characteristics of the anther and pollen, differentiation and retrogression of branch and spikelet, absorption efficiency of ions and its kinetics, root ability and its declined properties after heading, flag leaf photosynthetic and senescence characteristics, translocation of assimilates of different combining ability restoring lines The main results were as follows:
     The orders of the restoring lines for the generally combining ability (GCA) of yield per plant were:F89 (4.48)>F196 (2.83)>F177 (0.16)>F184 (-1.66)>F175 (-2.34) >Minghui63 (-3.46)
     The important traits for the high combining ability restoring lines were higher potassium absorbing ability of young root, bigger panicle model, less retrogressed spikelets, and bigger pollen, more pollen amount and higher pollen activity, higher yield per plant, higher rETR(relatively electron transfer rate) and Fv/Fm after the full expanding of the flag leaf, lower activity for the SPS, lower daily dynamic of the flag leaf starch content at heading. lower variations of dry weight per spikelets, lower Fv/Fm and Y (Ⅱ), higher Y(NO), higher SOD activity and the MDA content after heading, along with derease of chlorophyll content of flag leaf and the photosynthetic rate after heading, lower photosynthetic rate, stomatal conductance at grain filling stage, plant no maintaining leaf green and better leaf coloure change.
     Correlations between the combining ability yield per plant and nitrogen and phosphate uptake kinetics parameter during seedling stage, size of pollen, the root activity, spikelet root exudate at heading, the root activity declined value 30 days after heading, chlorophyll fluorescence parameter Y (Ⅱ) after the full expanding of the flag leaf and ETR at heading, the MDA content of flag leaf, the leaf surface temperature and temperature discrepancy between air after heading, flag leaf inorganic phosphate content and its daily dynamic, flag leaf sucrose content and its daily dynamic, flag leaf starch content, the activity for the RuBPCase at heading, chlorophyll content of flag leaf and net photosynthesis rate, stomatal conductance, intercellular CO2 concentration from the full expanding of the flag leaf to 20 days after heading were insignificant.
     The important traits for the F1s of the high combining ability restoring lines were lower potassium absorbing ability of young root, lower chlorophyll content of flag leaf after the full expanding of the flag leaf, negative significant at 0.05 level correlations between flag leaf inorganic phosphate content and flag leaf sucrose content, higher flag leaf sucrose content in 12:30 at heading, bigger panicle model, more spikelets, less pollen amount, small anther, lower chlorophyll fluorescence parameter Fo、Fm、F、Fm'at heading, along with derease of chlorophyll content of flag leaf and the photosynthetic rate after heading, lower photosynthetic rate and variations of dry weight per spikelets at grain filling stage.not maintain green and easy to change coloure.
引文
[1]Sprague G F, Tatum L A, General V S. Specific combining ability in single crosses of corn. American Science Agronmy,1942, (34):923~933
    [2]Wang G L, Manjit S K, Orlando M. Genetic analyses of grain-filling rate duration in maize. Field Crops Research,1999,61:211~222
    [3]Zhang M Q, Chen R K, Luo J, et al. Analyses for inheritance and combining ability of photochemical activities measured by chlorophy Ⅱ fluorescence in the segregating generation of sugarcane. Field Crops Research,2000,65:31~39
    [4]Verma O P, Srivastava H K. Genetic component and combining ability analyses in relation to heterosis for yield and associated traits using three diverse rice-growing ecosystems. Field Crops Research,2004,88:91~102
    [5]谢华安,罗家密,张受刚,等.籼型杂交水稻恢复系的选育.杂交水稻,1994,(3):31-32
    [6]李平,王以柔,刘鸿先.籼型杂交水稻F1代高产优势的生理基础研究.中国农业科学,1990,23(5):39-44
    [7]倪先林, 张涛, 蒋开锋, 等.杂交稻特殊配合力与杂种优势、亲本间遗传距离的相关性.遗传,2009,31(8):849-854
    [8]刘炜,李自超,史延丽,等.试用配合力进行粳型水稻杂种优势生态型的划分.作物学报,2004,30(1):66-72
    [9]邹小云,傅军如,王经良,等.利用配合力效应划分籼型水稻杂种优势生态型.杂交水稻,2008,23(4):56-61
    [10]戴正元,张洪熙,孔祥斗,等.籼型杂交水稻F1优势与高产恢复系关系的研究.江苏农学院学报,1998,19(4):18-22
    [11]王三良,许可.我国籼型杂交水稻育种现状、问题与对策.杂交水稻,1996(3):1-4
    [12]何光华,唐梅,裴炎,等.四川主要水稻恢复系的DNA多态性初步研究.1999,14(6):39-40
    [13]程式华.杂交水稻育种材料和方法研究的现状及发展趋势.中国水稻科学,2000,14(3):165-169
    [14]段世华,毛加宁,朱英国.用微卫星DNA标记对我国杂交水稻的主要恢复系遗传差异的检测分析.遗传学报,2002,29(3):250-254
    [15]刘殊,程慧,王飞,等.我国杂交水稻主要恢复系的DNA多态性研究.中国水稻科学,2002,16(1):1-5
    [16]Alamm F, Khan M R, Nuruzzaman M, et al. Genetic basis of heterosis and inbreeding depression in rice (Oryza sativa L.).Zhejiang University Science,2004,5(4):406~411
    [17]廖伏明,周坤炉,阳和华,等.杂交水稻亲本遗传差异及其与杂种优势的关系.中国水稻科学,1998,12(4):193-199
    [18]孙传清,姜廷波,陈亮,等.水稻杂种优势与遗传分化关系的研究.作物学报,2000,26(6):641-649
    [19]Yadav H N, Agrawal R K, Singh S P. Inheritance of qualitative and quantitative traits in rice. Madras Agriculture Journal,2006,93 (7-12):160~164
    [20]Zhang C J, Chu H J, Chen G X, et al. Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. Journal of Plant Research,2007,120(2):209~217
    [21]Sahu P K, Roy A T, Sahoo N C, et al. Heterosis in yield attributing and physiological traits of rice hybrids involving male sterile lines. Environment and Ecology,2005,23(3):122-127
    [22]王玉珍,孟祥祯.水稻的一些生理特性的配合力和杂种优势.河北农垦科技,1994,(3):35-37
    [23]Anna Durai A杂交水稻生理性状的杂种优势.向平摘译自Indian Journal Genetic,2002, 62(4):331~333
    [24]Raznesha M S水稻籽粒产量杂种优势的生理基础. 向平摘泽自Indian Journal Genetic, 1999,59(4):411~415
    [25]潘晓华,王永锐,傅家瑞.水稻根系生长生理的研究进展.植物学通报,1996,13(2):13-20
    [26]郑景生,林文,姜熙伟,等.超高产水稻根系发育形态学研究. 福建农业学报,1999,14(3):1-6
    [27]凌启鸿,陆卫平,蔡建中,等.水稻根系分布与叶角关系的初步研究.作物学报,1989,15(2):123-131
    [28]张国平,朱庆森.水稻根系对水分和养分的反应.江苏农学院学报,1990,11(1):23-27
    [29]凌启鸿主编.稻麦研究新进展.东南大学出版社,1991.168-211
    [30]潘学彪,韩月澎,陈宗祥,等.水稻植株形态遗传改良的研究进展.扬州大学学报,2004,25(1):36-40
    [31]曹树青,邓志瑞,翟虎渠,等.籼型杂交水稻根系活力及其衰退特性的配合力及杂种优势分析.中国水稻科学,2002,16(1):19~23
    [32]梁建生,曹显祖.杂交水稻叶片的若干生理指标与根系伤流强度关系.江苏农学院学报,1993,14(4):25-30
    [33]王彦荣,华泽田, 陈温福,等.粳稻根系与叶片早衰的关系及其对籽粒灌浆的影响.作物学报,2003,29(6):892-898
    [34]程式华,曹立勇,陈深广,等.后期功能型超级杂交稻的概念及生物学意义.中国水稻科学,2005,19(3):280-284
    [35]欧志英,彭长连,林桂珠.田间条件下超高产水稻培矮64S/E32及其亲本旗叶的光合特性.作物学报,2005,31(2):209-213
    [36]曹树青,翟虎渠,杨图南,等.水稻种质资源光合速率及光合功能期的研究.中国水稻科学,2001,15(1):29-34
    [37]翟虎渠,曹树青,唐运来,等.籼型杂交水稻光合性状的配合力及遗传分析.作物学报,2002,28(2):154-160
    [38]张荣铣,刘晓忠,方志伟,等.小麦叶片展开后光合固碳能力——叶源量的估算.中国农业科学,1997,30(1):84-91
    [39]曹树青,翟虎渠,张红生,等.不同类型水稻品种叶源量及有关光合生理指标的研究.中国水稻科学,1999,13(2):91-94
    [40]曹树青,陆巍,张荣铣,等.水稻叶源量的调节与遗传分析.中国农业科学,2002,35(8):901-905
    [41]曹树青,陆巍,翟虎渠,等.用水稻苗期叶绿素含量相对稳定期估算水稻剑叶光合功能期的方法研究.中国水稻科学,2001,15(4):309-313
    [42]曹树青,翟虎渠,盛生兰,等.高产杂交籼稻Ⅱ优129光合碳同化特性的研究.杂交水稻,2001,16(1):46-50
    [43]胡文新,彭少兵,高荣孚,等.国际水稻研究所新株型水稻的气孔特征.中国农业科学,2002,35(10):1286-1290
    [44]王建林,徐正进,魏树和.水稻株型育种生理生态特性的研究现状与展望.辽宁农业科学,2000(4):23-27
    [45]赵秀琴,赵明,肖俊涛,等.栽野稻远缘杂交高光效后代及其亲本叶片的气孔特性.作物学报,2003,29(2):216-221
    [46]马文波,马均,明东风,等.不同穗重型水稻品种剑叶光合特性的研究.作物学报,2003,19(2):236-240
    [47]王学华.超级稻上部叶片光合能力的研究.作物研究,2004,(2):68-71
    [48]陈信波,廖爱君,罗泽民.大穗型水稻生育后期叶片和根系生理的特性.生命科学研究,1999,3(3):250-255
    [49]吕建林,林守勇,林文雄.杂交稻的物质生产与产量优势的形成.福建农业大学学报,1995,24(4):384-388
    [50]何光华,郑家奎,阴国大,等.水稻籽粒的灌浆研究Ⅱ、不同生长阶段籽粒灌浆持续期、灌浆速率和干物质积累量的杂种优势和配合力.西南农业学报,1995,8(1):1-6
    [51]朴钟泽,韩龙植,高熙宗,等.水稻干物质量和氮素利用效率性状的配合力分析.中国水稻科学,2005,19(6):527-532
    [52]严建民,翟虎渠,万建民,等.亚种间重穗型杂种稻光合产物的运转特性及其生理机制.中国农业科学,2003.36(5):502-507
    [53]潘晓华,王永锐.水稻库/源比对叶片光合作用、同化物运输和分配及叶片衰老的影响.作物学报,1998,24(6):821-827
    [54]潘晓华,王永锐.二系稻N31S/P40(F1)改变库/源比对叶片衰老及同化物分配的影响.江西农业大学学报,1994,16(3):221-226
    [55]潘晓华,王永锐.两系杂交稻始穗期追氮钾肥对同化物运输与分配的影响.江西农业大学学报,1996,18(3):252-258
    [56]李木英,潘晓华,石庆华,等.两系杂交稻结实期茎鞘物质转运特性及其对籽粒灌浆影响的初步研究.江西农业大学学报,1998,20(3):296-302
    [57]李木英,潘晓华,石庆华,等.两系稻结实期胚乳和茎鞘非结构碳水化合物代谢活性的研究.作物学报,2002,28(6):821-828
    [58]屠乃美,周文新,郑华,等.相同父本的不同两系杂交组合物质生产和运输及产量形成特性.中国水稻科学,2004,18(3):223-228
    [59]马均,马文波,周开达,等.水稻不同穗型品种穗颈节间组织与籽粒充实特性的研究.作物学报,2002,28(2):215-220
    [60]马均,周开达,马文波,等.重穗型杂交稻穗颈节间维管束与籽粒充实关系的研究.中国农业科学,2002,35(5):576-579
    [61]凌启鸿,蔡建中,苏祖芳.水稻茎秆维管束数与穗部性状关系及其应用的研究.江苏农学院学报,1982,3(3):7-16
    [62]黄璜.水稻穗颈节间组织与颖花数的关系.作物学报,1998,24(2):193-200
    [63]徐正进,陈温福,曹洪任,等.水稻穗颈维管束数与穗部性状关系的研究.作物学报,1998,24(1):47-54
    [64]陶澜,程艳军,谢戎,等.水稻穗颈维管束及其相关性状的基因效应分析.中国农业科学,2004,37(12):1932-1937
    [65]杨建昌,张文虎,王志琴,等.水稻新株型与粳/籼杂种源库特征与物质运转的研究.中国农业科学,2001,34(5):511~518
    [66]杨建昌,苏宝林,王志琴,等.亚种间杂交稻籽粒灌浆特性及其生理的研究.中国农业科学,1998,31(1):7-14
    [67]梁建生,曹显祖,徐生,等.水稻籽粒库强与其淀粉积累之间关系的研究. 作物学报,1994,20(6):685-691
    [68]王余龙,蔡建中,何杰升,等.水稻颖花根活量与籽粒灌浆结实的关系.作物学报,1992,18(2):81-89
    [69]曹树青,张容珗,唐运来,等.鉴定水稻灌浆期叶片光合作用与籽粒灌浆切合程度的新指标.作物学报,2002,28(4):516-520
    [70]谢戎,李耘,何光华,等.杂交水稻干物质累积的基因型差异.西南农业大学学报,2004,26(4):379-382
    [71]李雪梅,徐正进,陈强,等.辽优3225及亲本灌浆期部分生理特性及经济性状的研究.沈阳师范大学学报(自然科学版),2005,23(4):402-404
    [72]徐志文,谢振文,陈晓玲,等.水稻营养生长期谷氨酰胺合成酶活性杂种优势初步研究.安徽农学通报,2008,14(7):74-75
    [73]汤丽云,陆士伟.优质籼稻育种中F1代生理优势.杂交水稻,1999,14(4):34-36
    [74]俎桂芹,孙国荣,万青林.水稻苗期几种酶活性及生理性状与杂种优势的早期预测研究.黑龙江农业科学,1992,(4):6-10
    [75]陆作楣.论杂交稻育种的配合力选择.中国水稻科学,1999,13(1):1-5
    [76]宋宇,邹小云,贺浩华,等.籼型三系杂交水稻产量及其相关性状的配合力分析.江西农业大学学报,2004,26(5):719-725
    [77]余守武,尹建华,刘宜柏,等.三交水稻的育种研究Ⅲ.三交中晚稻主要农艺性状的配合力和遗传力分析.作物学报,2005,31(6):784-789
    [78]Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal Biology Science,1956,9:454~463
    [79]潘家驹主编.作物育种学总论.北京:中国农业出版社,2000.92-94
    [80]唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2002
    [81]廖佩常.水稻主要性状配合力的分析.遗传,1980,2(5):22-24
    [82]廖伏明,周坤炉,盛孝邦.籼型三系杂交水稻主要农艺性状配合力研究.作物学报,1999,25(5):622-631
    [83]潘华,梁木根,贺浩华,等.三个水稻不育系主要农艺性状配合力分析.江西农业大学学报,2001,23(增刊):1-4
    [84]戚昌瀚.水稻品种的库源关系与调节对策简论.江西农业大学学报,1993,15(1):1-5
    [85]Sheehy J E, Dionora M J A. Miteh P L Spikelet numbers,sink size and potential yield in rice. Field Crops Research,2001,71(2):77~85
    [86]邹应斌,周上游,唐启源.中国超级杂交水稻超高产栽培研究的现状与展望.中国农业科技导报,2003,5(1):31-35
    [87]关欣,陈温福,徐正进,等.不同年代水稻品种穗部性状比较研究.沈阳农业大学学报,2004,35(2):81-84
    [88]吴光南,张云桥.稻穗发育过程及其控制途径的研究.作物学报,1962(3):43-52
    [89]松岛省三著,庞诚泽,李沛霖,严光磊校.稻作的理论与技术.2版.北京:农业出版社,1978.121-161
    [90]姚友礼,王余龙,蔡建中.水稻大穗形成机理的研究一(1)品种间每穗颖花分化数的差异及其与穗部性状的关系.江苏农学院学报.1994,15(2):33-38
    [91]姚友礼,王余龙,蔡建中.水稻大穗形成机理的研究一(2)品种问每穗颖花退化数的差异及其与分化数和抽穗期物质生产的关系.江苏农学院学报,1994,15(4):24-29
    [92]姚友礼,王余龙,蔡建中.水稻大穗形成机理的研究一(3)品种间每穗颖花现存数与颖花分化和抽穗期物质生产的关系.江苏农学院学报,1995,16(2):11-16
    [93]彭春瑞,董秋洪,涂田华,等.亚种间杂交稻大穗形成机理研究一(1)颖花的形成特点.杂交水稻,1995(5):28-30
    [94]Toshihiro H, Yasuo K, Noam G. Response of spikelet number to plant nitrogen concentration and dry weight in paddy rice. Agron Journal,1994,86:673~675
    [95]杨洪建,王余龙,黄建哗,等.开放式CO2浓度增高对水稻颖花分化和退化的影响.应用生态学报,2002,13(10):1215-1218
    [96]丁获蛟,任国安.杂交水稻直播制种母本颖花退化的原因与施肥技术探讨.杂交水稻,1995(3):19-21
    [97]陈小荣,钟蕾,贺晓鹏,等.稻穗枝梗和颖花形成的基因型及播期效应分析.中国水稻科学,2006,20(4):424-428
    [98]钟蕾,陈小荣,胡华金,等.杂交稻亲本枝梗和颖花分化与退化对播期反应的基因型差异与类型.江西农业大学学报,2007,29(5):695-700
    [99]柳新伟,盂亚利,周治国,等.水稻颖花与籽粒发育模拟的初步研究.中国水稻科学,2004,18(3):249-254
    [100]柳新伟,盂亚利,周治国,等.水稻颖花分化与退化的动态特征.作物学报,2005,31(4):451-455
    [101]姜廷波,李荣田,崔成焕,等.水稻穗型构成性状的遗传分析.黑龙江农业科学,1995,6:1-5
    [102]王彬,韩赞平,汪旭东,等.杂交籼稻穗部性状的配合力及遗传力研究.种子,2005,24(10):21-26.
    [103]陈文强,石帮志,周乐良,等.水稻三系不育系G98A组合测配及配合力分析.种子,2008,27(9):103-105
    [104]Houghton J T, Meria Filho L G, Bruce J, et al. Climate Change 1994-Radiative Forcing of Climate Change and An Evalution of The IPCC IS92 Emission Scenarios. Cambridge UK:Cambridge University,1995.1~49
    [105]IPCC. Climate Change 2001-the Scientific Basis Cambridge UK:Cambridge University, 2001.101~125
    [106]Nishiyama I, Satake T. High temperature damage in the rice plant. Japan Trop Agricultrue, 1981,25:14~19
    [107]Matsui T, Omasa K, Horie T. The difference in sterility due to high temperature duing the flowering period among japonica rice varieties. Plant Prod Science,2001,4(2):90~93
    [108]Ekanayake I J, Steponkus P L, De Datta S K. Sensitivity of pollination to water deficits at anthesis in upland rice. Crop Science,1990,30:310~314
    [109]Pal N R, Pal S K. A review on image segmentation technique. Pattern Recognition,1993, 26(9):234-240
    [110]辛莉,胡茂海,周绍光.水稻花粉颗粒显微图像采集与分析系统研究.应用光学,2004,25(1):43-45
    [111]叶昌荣,戴陆园,廖新华,等.低温诱导下水稻花药和不育花粉数的变化及其与耐冷性的关系.西南农业学报,1996,9(3):1-6
    [112]Matsui T, Omasa K, Horie T. High Temperature at Flowering inhibits swelling of pollen grains,a driving force of thecae dehiscence in rice(Oryza sativa L.). Plant Prod Science,2000, 3(4):430~434
    [113]张桂莲,陈立云,张顺堂,等.高温胁迫对水稻花粉粒性状及花药显微结构的影响.生态学报,2008,28(3):1089-1097
    [114]王学奎主编.植物生理生化实验原理与技术(第2版).北京:高等教育出版社,2006.220-221
    [115]西山岩男.水稻小孢子初期冷温诱导的雄性不育.第26报:充实花粉数和穗上不同位置颖花的冷温感受性差异(英).日作记,’1983,51(4):307-313
    [116]叶昌荣,熊建华,戴陆园,等.水稻花药在耐寒性鉴定上的应用.西南农业学报,1996,9(1):1-4
    [117]Satake T, Yoshida S. High temperature induced sterility in indica rices at flowering. Japan Journal Crop Science,1978,47(1):6~17
    [118]Nishigbnma I. Effects of temperature on the Vegitative frowth of rice plants. Climate and Rice, IRRI,1974
    [119]张卫星,朱德峰,廖西元,等.水稻籽粒形态的机器视觉检测及其在抗旱性鉴定中的应用.2009年中国作物学会学术年会论文集:136
    [120]陈小荣,石庆华,潘晓华,等.金优463在赣中北作双季早稻的产量、产量构成因素分析与生产对策.江西农业大学学报,2006,28(2):161-163
    [121]杨文钰,屠乃美.作物栽培学各论(南方本).北京:中国农业出版社,2003
    [122]陈小荣,潘晓华,陈忠平,等.施氮对籼型双季杂交水稻枝梗和颖花分化与退化的影响.江西农业大学学报,2008,30(1):1-6
    [123]Virmani S S著,杨仁崔,陈顺辉泽.杂种优势和杂交水稻育种.福建科学技术出版社,1996
    [124]涂诗航,张水金,董瑞霞,等.籼型三系杂交水稻亲本主要农艺性状配合力及遗传力分析.福建农林大学学报(自然科学版),2008,37(3):230-234
    [125]张利华,王建军,李旭晨,等.籼型三系杂交水稻亲本主要农艺性状的配合力分析.浙 江农业学报,2003,15(1):1-7
    [126]黄发松.水稻根系生长生理与根系遗传育种研究.∥作物育种学术论文集.北京:中国农业出版社,1998
    [127]李锋,潘晓华.植物适应缺磷胁迫的根系形态及生理特征研究进展.中国农学通报,2002,18(5):65-69,76
    [128]李锋,潘晓华,刘水英,等.低磷胁迫对不同水稻品种根系形态和养分吸收的影响.作物学报,2004,30(5):438-442
    [129]李锋,李木英,潘晓华,等.不同水稻品种幼苗适应低磷胁迫的根系生理生化特性.中国水稻科学,2004,18(1):48-52
    [130]Frederisksen H B, Ronn R, Christensen S. Effecter of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw. Global Change Biology,2001,7:313~ 321
    [131]Chen G P, Cheng L, Zhu J G, etl. Effects of Free-air CO2 Enrichment on Root Characteristics and C:N Ratio of Rice at the Heading Stage. Rice Science,2006,13(2):120~124
    [132]Sato, Shibuya K, Saigusa M, et al. Single basal application of total nitrogen fertilizer with controlled-release coated urea on non-tilled rice culture. Japan Journal Crop Science,1993, 62(3):408~413
    [133]Karnosky D F, Pregitzer K S, Zak D R, et al. Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant,Cell and Environment,2005,28,965~981
    [134]Kirk G J D. Plant-mediated processes to acquire nutrients:Nitrogen uptake by rice plants. Plant and Soil,2001,232:129~134
    [135]Wissuwa M, Ae N. Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement. Plant Breeding,2001,120(1):43~48
    [136]Kronzucker H J, Siddiqi M Y, Class A D M, et al. Nitrate-ammonium synergism in rice:A subcellular flux analysis. Plant Physiology,1999,119:1041~1045
    [137]Marschner H. Mineral Nutrition of Higher Plants.2nd Ed. London:Academic Press,1997
    [138]Crawford N M, Class A D M. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science,1998,3:389~395
    [139]封克,汪晓丽,陈平,等.旱稻和水稻不同基因型根细胞膜特性与氮素吸收的关系.中国农业科学,2004,37(11):1705-1708
    [140]孙小茗,封克,汪晓丽.K+高亲和转运系统吸收动力学特征及其受NH4+影响的研究.植物营养与肥料学报,2007,13(2):208-212
    [141]张亚丽,董园园,沈其荣,等.不同水稻品种对铵态氮和硝态氮吸收特性的研究. 土壤学报,2004,41(6):918-923
    [142]杨肖娥,孙羲.不同水稻品种NH4+和N03-吸收的动力学.土壤通报,1991,22(5):222- 224
    [143]谢少平,倪晋山.水稻(威优49)幼苗根系K+(80Rb+)吸收的调节,植物生理学报,1990,16(1):63-69
    [144]魏朝富,谢德林,郭碧花,等.酸性水稻土上水稻对硅、钾、钙、镁的吸收及其动力学研究.植物营养与肥料学报,2002,8(4):452-457
    [145]倪晋山,安林昇.三系杂交稻幼苗NH4+、K+吸收的动力学分析.植物生理学报,1984,10(4):381-390
    [146]Zhong X H, Huang N R. Rice Grain Chalkiness Is Negatively Correlated with Root Activity During Grain Filling. Rice Science,2005,12(3):192~196
    [147]许乃霞,杨益花.抽穗后水稻根系活力与地上部叶片衰老及净光合速率相关性的研究.安徽农业科学,2009,37(5):1919-1921
    [148]Yoshida S, Forno D A, Cook J H, et al. Routine Procedure for Growing Rice Plants in Culture Solution. In:Laboratory Manual for Physiological Studies of Rice,3rd ed. The International Rice Research Institude. Los Banos, Laguna, Philippines.1976.61~65
    [149]Claassen N, Barber S A. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiology,1974,54:564~568
    [150]徐玲玲,陈善娜,程在全,等.云南野生稻离子吸收效率及其动力学特征研究.植物生理学通讯,2006,42(3):406-410.
    [151]华海霞,梁永超,娄运生,等.水稻硅吸收动力学参数固定方法的研究.植物营养与肥料学报,2006,12(3):358-362.
    [152]蒋廷惠,郑绍建,石锦芹,等.植物吸收养分动力学研究中的几个问题.植物营养与肥料学报,1995,1(2):11-17.
    [153]邹琦.植物生理生化实验指导.北京:中国农业出版社,1995
    [154]毛达如主编.植物营养研究方法.北京:北京农业大学出版社,1994.132-137
    [155]沈波,王熹.籼梗亚种间杂交水稻关系伤流强度的变化规律及其与叶片生理的相互关系.中国水稻科学,2000,14(2):122-124
    [156]张强,李自强,傅秀林,等.不同株穗型水稻超高产品种叶绿素含量变化规律及籽粒灌浆动态研究.作物学报,2005,31(9):1198-1206
    [157]王志琴,杨建昌,朱庆森,等.亚种间杂交稻籽粒充实不良的原因探讨.作物学报,1998,24(6):782-787
    [158]焦德茂,李霞,黄雪清,等.不同高产水稻品种生育后期叶片光抑制、光氧化和早衰的关系.中国农业科学,2002,35(5):487-492
    [159]张荣铣,戴新宾,许晓明,等. 叶片光合功能期与作物产量潜力.南京师范大学学报,1999,22(3):250-260
    [160]Dhindsa R S, Plumb-Dhindsa P L, Reid D M. Leaf senescence and lipid peroxidation:Effect of some phytohormones,and scavengers of free radicals and singlet oxygen. Physiol Plant, 56:453~457
    [161]陈少裕.膜脂过氧化对植物细胞的伤害.植物生理学通讯,1991,27(2):84-90
    [162]林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧化物歧化酶及脂质过氧化作用的关系.植物学报,1984,26(6):605-615
    [163]宋纯鹏编著.植物衰老生物学.北京:北京大学出版社,1998.30-57
    [164]孟军,陈温福,徐正进,等.水稻剑叶净光合速率与叶绿素含量的研究初报.沈阳农业大学学报,2001,32(4):247-249
    [165]段俊,梁承邺,张明永,等.水稻结实期间叶片衰老与膜脂过氧化的关系.中国水稻科学,1997,11(3):190-192
    [166]韩胜芳,邓若磊,徐海荣,等.缺磷条件下不同磷效率水稻品种光合特性和细胞保护酶活性.应用生态学报,2007,18(11):2462-2467
    [167]Xu D P, Duan X L, Wang BY, et al. Expression of a late embryogensis abundant protein gane,HVA7,from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol,1996,110:249~257
    [168]Crafts-Brandner S J, Salvucci M E. Rubisco Constrains the Photosynthetic Potential of Leaves at High Temperature and CO2. Proc Natl Acad Science USA,2000,97:13430~13435
    [169]朱萍,杨世民,马均,等.遮光对杂交水稻组合生育后期光合特性和产量的影响.作物学报,2008,34(11):2003-2009
    [170]Ciompi S, Gentili E, Guidi L, et al. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Science,1996,118:177~184
    [171]Jonaliza C, Lanceras, Grienggrai P, et al. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol,2004,135:384~399
    [172]Monje O, Bugbee B. Adaptation to high CO2 concentration in an optimal environment,radiation capture,canopy quantum yield and carbon use efficiency. Plant Cell Environ,1998,21:315~ 324
    [173]San-oh Y, Sugiyama T, Yoshita D, et al. The effect of planting pattern on the rate of photosynthesis and related processes during ripening in rice plants. Field Crops Research, 2006,96:113~124
    [174]Ying J F, Peng S B, He Q R, et al. Comparison of high-yield rice in tropical and subtropical environments.I.Determinations of grain and dry matter yield//IRRI, ed. Field Crops Research. Los Banos, Philippines:IRRI,1998
    [175]Ayeneh A, van Ginkel M. Comparison of leaf,spike,peduncle and canopy temperature depression in wheat under heat stress. Field Crops Research,2002,79:173~184
    [176]Chauham J S, Moya T B, Singh R K, et al. Influence of soil moisture stress during reproductive stage on physiological parameters and grain yield in upland rice. Oryza,1999,36(2):130~135
    [177]周春菊,张嵩午,王林权,等.施肥对小麦冠层温度的影响及其与生物学性状的关联.生态学报,2005,25(1):18-22
    [178]张彬,郑建初,杨飞,等.施肥水平对抽穗期水稻穗部温度的影响及其原因分析.中国水稻科学,2007,21(2):191-196
    [179]Zhang W Z, Han Y D, Du H J. Relationship Between Canopy Temperature at Flowing Stage and Soil Water Content,Yeild Components in Rice. Rice Science,2007,14(1):67~70
    [180]Bjorkman O. High-irradiance stress in higher plants and interaction with other stress factors. Progress of Photosynthesis Research,1987,4:11~18
    [181]Subhash N, Wenzel O, Lichtenthaler H K. Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants. Remote Sensing of Environment,1999,69:213~215
    [182]Hill R, Schreiber U, Gademann R, et al. Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals. Marine Biology,2004, 144:633-640
    [183]Schreiber U, Walt H, Kolbowski J. Propagation of spatial variations of chlorophyll fluorescence parameters in dandelion leaves induced by laser spot heating. PAM News,2003, 01:1~18
    [184]滕中华,智丽,宗学凤,等.高温胁迫对水稻灌浆结实期叶绿素荧光、抗活性氧活力和稻米品质的影响.作物学报,2008,34(9):1662-1666
    [185]Ou Z Y, Peng C L, Lin G Z, et al. Relationship Between PSII Excitation Pressure and Content of Rubisco Large Subunit or Small Subunit in Flag Leaf of Super High-Yielding Hybrid Rice. Acta Botanica Sinica,2003,45(8):929~935
    [186]华春,王仁雷.杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化.西北植物学报,2003,23(3):406-409
    [187]王娜,陈国祥,吕川根.两优培九与其亲本剑叶光合特性的比较研究.杂交水稻,2004,19(1):53-55
    [188]陈防,鲁剑巍.SPAD-502叶绿素计在作物营养快速诊断上的应用初探.湖北农业科学,1996,2:31-34
    [189]李刚华,丁艳锋,薛利红,等.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展.植物营养与肥料学报,2005,11(3):412-416
    [190]李志宏,刘宏斌,张云贵.叶绿素仪在氮肥推荐中的应用研究进展.植物营养与肥料学报,2006,12(1):125-132
    [191]陈悦,王学华,廖轶,等.水稻剑叶取向对其光合功能的影响.植物生理与分子生物学学报,2002,28(5):396-398
    [192]许大全.光合作用测定及研究中一些值得注意的问题.植物生理学通讯,2006,42(6):1163-1167
    [193]赵世杰等.植物组织中丙二醛测定方法的改进.植物生理学通讯.1994,30(3):207-210
    [194]邹琦.植物生理学实验指导.北京:中国农业出版社,2000
    [195]朱广廉,钟诲文,张爱琴.植物生理学实验.北京:北京大学出版社,1990.73-76
    [196]张志良,瞿伟菁主编.植物生理学实验指导(第三版).北京:高等教育出版社,2003.93-95,127-128,137-138
    [197]王学奎主编.植物生理生化实验原理与技术(第2版).北京:高等教育出版社,2006.138-139
    [198]王忠主编.植物生理学(第二版).北京:中国农业出版社,2009.
    [199]王贵民,陈国祥,张美萍,等.高产杂交水稻剑叶全展后主要光合生理特征的研究.核农学报,2008,22(5):697-700
    [200]王仁雷,华春,杂交稻汕优63剑叶光合特性的研究.南京师大学报(自然科学版),2001,24(4):111-115
    [201]许大全.气孔的不均匀关闭与光合作用的非气孔限制.植物生理学通讯,1995,31(4):246-252
    [202]许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯,1997,33(4):241-244
    [203]杨长明,杨林章.有机-无机肥配施对水稻剑叶光合特性的影响.生态学杂志,2003,22(1):1-4
    [204]李临颍,吴元中,段项锁.辐射增温效应对水稻叶片温度及光合速率的影响.应用气象学报,1993,4(2):250-255
    [205]Chang J H. Climate and Agriculture,An Ecological Survey. Chicago:Aldine,1968
    [206]程旺大,赵国平,姚海根,等.冠层温度在水稻抗旱性基因型筛选中的应用及其测定技术.植物学通报,2001,18(1):70-75
    [207]Garrity D P, O'Toole J C. Selection for reproductive stage drought avoidance in rice,using infrared themoometry. Agronomy Journal,1995,87:773~779
    [208]翁晓燕,蒋德安,张峰.水稻抽穗后剑叶衰老过程中光合关键酶的基因表达.植物生理与分子生物学学报.2002,28(4):311-316
    [209]阳成伟,欧志英,林桂珠,等.超高产杂交稻剑叶衰老过程中的抗氧化性的变化.热带亚热带植物学报,2003,11(2):148-152
    [210]杨建昌,王志琴,朱庆森.水稻产量源库关系的研究.江苏农学院学报,1993,14(3):47-53
    [211]周文新,雷驰,屠乃美.水稻源库关系研究动态.湖南农业大学学报(自然科学版),2004,30(4):389-393
    [212]王丰,张国平,白朴.水稻源库关系评价体系研究进展与展望.中国水稻科学,2005, 19(6):556-560
    [213]盛大海,刘元英,李广宇.水稻源库关系研究进展与应用.东北农业大学学报,2009,40(5):117-122
    [214]程旺大,张国平,姚海根,等.密穗型水稻品种的籽粒灌浆特性研究.作物学报,2003,29(6):841-846
    [215]杨建昌,徐国伟,王志琴,等.旱种水稻结实期茎中碳同化物的运转及其生理机制.作物学报,2004,30(2):108-114
    [216]黄农荣,钟旭华,王丰,等.超级杂交稻结实期根系活力与籽粒灌浆特性研究.中国农业科学,2006,39(9):1772-1779
    [217]吴建富,潘晓华,石庆华.免耕抛栽对水稻产量及其源库特性的影响.作物学报,2009,35(1):162-172
    [218]Surekha B, Rangil S. Phytohormone-mediated transformation of sugars to starch in relation to the activities of amylases,sucrose-me-tabolizing enzymes in sorghum grain. Plant Crowth Regulation,2002,00:1~8
    [219]Hans W, Ljudmilla B, Ulrich W. Sugar import and metabolism during seed development. Trends in Plant Science,1997,2(5):169-174
    [220]Hirose T, Takano M, Terao T. Cell wall invertase in developing rice caryopsis:molecular cloning of OsCIN1 and analysis of its expression in relation to its role in grain filling. Plant Cell Physiol,2002,43:452~459
    [221]Chen C L, Sung J M. Carbohydrate metabolism enzymes in CO2-enriched developing rice grain varying in grain size. Physiol Plant,1994,90:78~85
    [222]Kato T. Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Science,1995,35:827~831
    [223]马均,明东风,马文波,等.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究.中国农业科学,2005,38(2):290-296
    [224]苏丽英,吴勇,於新建,等.水稻叶片蔗糖磷酸合成酶的一些特性.植物生理学报,1989,15(2):117-123
    [225]王志琴,叶玉秀,杨建昌,等.水稻灌浆期籽粒中蔗糖合成酶活性的变化与调节.作物学报,2004,30(7):634-643
    [226]王维,.蔡一霞,蔡昆争,等.水分胁迫对贪青水稻籽粒充实及其淀粉合成关键酶活性的影响.作物学报,2006,32(7):972-979
    [227]李天, 大杉立, 山岸 徼,等.灌浆结实期弱光对水稻籽粒蔗糖及其降解酶活性的影响.作物学报,2006,32(6):943-945
    [228]Li T, Liu Q H, Ryu O, et al. Effect of High Temperature on Sucrose Content and Sucrose Cleaving Enzyme Activity in Rice Grain During the Filling Stage. Rice Science,2006, 13(3):205~210
    [229]夏叔芳,於新建,张振清.叶片光合产物的输出的抑制与中淀粉和蔗糖的积累.植物生理学报,1981,7(2):135-141
    [230]夏叔芳,张振清,於新建.玉米叶片中淀粉和蔗糖的昼夜变化与光合产物的输出.植物生理学报,1982,8(2):141-148
    [231]张振清,夏叔芳.无机磷对叶片淀粉和蔗糖积累的影响.植物生理学报,1982,8(4):385-391
    [232]张振清.光合碳在叶片中淀粉和蔗糖间分配的调节.植物生理学通讯,1989,15(6):1-6
    [233]潘晓华,石庆华,郭进耀,等.无机磷对植物叶片光合作用的影响极其机理的研究进展.植物营养与肥料学报,1997,3(3):201-208
    [234]鲍十旦主编.土壤农化分析(第三版).北京:中国农业出版社,2007.80-81,323-325
    [235]上海植物生理学会编.植物生理学实验手册.上海:上海科学技术出版社,1985.114-115,149-150
    [236]吉田昌一,福尔诺DA,科克J H,等.水稻生理学实验手册.北京:科学出版社,1975.41-44
    [237]章俊德,刘国屏,施永宁等编.植物生理实验法.南昌:江西人民出版社,1982.182-183
    [238]王忠主编.植物生理学.北京:中国农业出版社,2000