证据网络建模、推理及学习方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不确定性决策是目前管理科学研究和应用中的一个热点问题。客观世界的实际问题往往涉及众多相互联系又相互影响的因素,这些因素本身及其相互之间的关系都存在大量的不确定性,而不确定性可分为两类,一类是反映客观事物内在本质的随机不确定性,一类是反映由于人们对客观世界的认识不足、信息缺失或知识缺乏而导致的认知不确定性。如何描述各种不确定性,如何在复杂关系分析中对问题有效的建模,如何综合定量数据和定性知识而做出科学的决策,都对不确定性管理决策问题的研究提出了新的挑战。
     为应对上述挑战,本文在定性定量综合集成方法论的指导下,通过对D-S证据理论和图模型基础理论的研究,借鉴贝叶斯网络模型的研究思路,提出了证据网络模型。证据网络模型是D-S证据理论和图模型的结合,其可以充分发挥D-S证据理论在不确定性信息处理,尤其是认知不确定性的建模和分析上的理论优势,发挥图模型在问题描述、关系分析上的语义优势,在理论上扩展不确定性建模与分析的研究思路和方法,为定性经验知识与定量数据的统一建模和综合处理提供技术手段,在实践上为不确定性管理问题的分析、建模、推理以及评估、决策提供技术方法与工具支撑。
     为建立一套完善的证据网络理论和方法体系,本文对证据网络的定义、结构建模、参数表示、不同参数模型下的推理、以及证据网络参数学习的相关理论和方法开展了深入研究。
     首先,定义了证据网络模型的基本概念、关键要素、基本特点和建模流程。证据网络模型通过定性层面的有向无环图描述变量之间的相互关系,定量层面的信度函数刻画变量之间影响模式和程度,综合了证据理论和图模型的特点,为系统分析和建模提供了一种描述不确定性,建模相互影响关系及综合处理信息的技术手段;为了构建证据网络的结构和参数模型,提出基于树模型和基于因果图的证据网络拓扑结构建模方法,定义了证据理论框架下知识描述的两种规范化证据网络参数模型——条件信度模型和信度规则模型。
     其次,研究并建立了以条件信度和信度规则为参数模型的证据网络推理策略与推理方法。其中,为解决条件信度参数模型下的证据网络推理问题,在条件信度函数计算理论基础上,提出了证据网络模型的正向因果推理和反向诊断推理方法;并通过对证据冲突悖论的分析,提出了一种基于冲突度量的证据网络信度合成算法,解决了证据网络结点信息融合问题。在以信度规则为参数模型的证据网络推理研究中,为分析结点之间的相互重要度,提出了不完全信息情况下的证据网络结点权重获取方法;并在证据推理算法的基础上,结合信度结构数据处理方法和信度规则激活算法,实现了数据与证据网络模型的对接,建立了基于信度规则的证据网络推理与结果分析方法。
     接着,构建了证据网络参数学习的数学模型并设计了基于投影梯度法的证据网络参数学习算法。针对以信度规则为参数的证据网络模型,分析建立其参数学习问题的非线性目标优化模型,提出以信度结构模型差距度量准则作为优化模型的目标函数,并证明了其合理性;通过推导模型解析表达式函数的梯度,设计基于投影梯度法的证据网络参数学习求解算法,从而建立起从历史数据和经验知识信息学习证据网络参数的技术和方法。
     最后,将上述证据网络推理和学习研究中提出的求解策略和方法,应用到航天系统安全性分析、军事威胁评估与预测、交通事故风险预警等管理决策问题中,以实际案例展示证据网络方法应用的过程,验证方法的可行性和有效性,说明证据网络模型理论及方法在系统分析与管理决策中的实际应用价值。
Uncertainty decision making is a very important research field in management science and applications. The real-world probems often involve many components and elements, which are interrelated and interactional. At the same time, large numbers of uncertainty exact among these elements and their relation. The uncertainty includes alearoty and epistemic uncertainty. The former is referred to as variability, irreducible and stochastic uncertainty. The later is also refered to as reducible, subjective and state-of-knowledge uncertainty, which is due to lack of knowledge or ambiguity. So, the new challenges in uncertainty management and decision research are how to describe various types of uncertainties, how to analyze and model complex relation of system, and how to aggregate quantitative data and qualitative knowledge for making correct decision.
     In order to meet the above challenges, the Evidential Network model is proposed, which follows the methodology of qualitative and quantitative information integration and research road of Bayesian network, on the basis of Dempster-Shafer theory of evidence and graph theory. The Evidential Network is a combination of and graph model. It has the capability, which comes from D-S theory, to deal uncertain information, especially the epistemic uncertainty. It also has advantages of discirbing problems and analyzing relationship, which comes from graph theory. In theoretical prospect, the Evidential Network will develop research ideas and methods for modeling and analyzing uncertainty, and develop technology and tools which build a uniform treatment framework for aggregating quantitative data and qualitative knowledge. In application prospect, it will provide technology and methods for analyzing, modeling, inference, assessment, and decision making in uncertainty management problems.
     For completing the theorerical and technical framework of Evidential Network model, this paper focuses on the research works of definition, topology constructing, parameter formulation, reasoning under different parameter models, and parameter learning as follows.
     Firstly, the basic concept of Evidential Network is defined, including elements, characteristics, and modeling process. The Evidential Network can describe the relations among variables using the directed acyclic graph under qualitative views, and denote the influence modes and degree under qualitative views. It has the advantages of D-S theory and graph theory, and provides a technical tool for describing uncertainty, modeling relations, and dealinig with information. The construction methods based on tree model and causal network are proposed for constructing the topology of Evidential Network. The parameter models of Evidential Network are formulated with knowledge description under framework of D-S theory, which consiste of two types: Conditional Belief Function (CBF) and Belief Rule Model (BRM).
     Secondly, the Evidential Network reasoning frameworks and approach with CBF and BRM parameter model are respectively analyzed. The forward causal and backward diagnosis reasoning for Evidential Network with CBF are solved using conditional belief inference and computing algorithms. A new belief combination algorithm is proposed based on a new belief conflict measurement, which avoids the conflict paradox of Dempster combination rule, to combine nodes’information of Evidential Network. In Evidential Network reasoning with BRM, a weight generating method based on goal programming is proposed to obtain EN nodes’priority under incomplete information environment. The EN reasoning with BRM is accomplished following several steps: belief structure data transformation, action weights of belief rule, evidetnaitl reasoning algorithms, and belief structure result analysis.
     Then, the mathematic formulations for EN parameters learning is constructed, and learning algorithms are proposed based on Rosen projection grads method. For Evidential Network with BRM, the parameters learning problem is transformed to an nonlinear objective optimization problems. The objective function of optimization problems is constructed by using a belief structure distance measurement, which defines the difference between belief structure models and has some basic property of distance measurement. The grads of objective function needs to be gotten when the projection grads method is used to solve optimation problems. The whole solution process is proposed steps by steps for EN parameters learning from historical data or experience knowledge.
     Finally, the solution process and approaches to Evidential Network, which are proposed in this paper, are used to deal with safety analysis and evaluation of aerospace system, military threat assessment and prediction, and risk forecasting of traffic accidents. These applications are examined to illustrate and show the feasibility and validity of the Evidential Network model, and to indicate the research and application value in the future system analysis, management, and uncertainty decision.
引文
[1]许国志,顾基发,车宏安.系统科学[M].上海:上海科技教育出版社, 2000.
    [2]李德毅,杜鹢.不确定性人工智能[M].北京:国防工业出版社, 2005.
    [3]李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报, 2004, 15(9): 1-13.
    [4] Kiureghian A D, Ditlevsen O. Aleatory or epistemic? Does it matter? [J] Structural Safety, 2009 (31):105-112.
    [5]刘宝碇,彭锦.不确定理论教程[M].北京:清华大学出版社,2005.
    [6] Pate-Cornel M E. Uncertainties in risk analysis: six levels of treatment [J]. Reliability Engineering and System Safety, 1996,54:95-111.
    [7] Oberkampf W L, Helton J C, Joslyn C A. Challenge problems: uncertainty in system response given uncertain parameters[J]. Reliability Engineering and System Safety, 2004,85(1):9-11.
    [8] Aven T. On how to define, understand and describe risk [J]. Reliability Engineering and System Safety, 2010, (95):623-631.
    [9] Helton J C, Oberkampf W L. Alternative representations of epistemic uncertainty [J]. Reliability Engineering & System Safety, 2004, 85(1-3):1-10.
    [10] Oberkampf W L, Helton J C, Joslyn C A, et al. Challenge problems: uncertainty in system response given uncertain parameters [J]. Reliability Engineering & System Safety, 2004, 85(1-3): 11-19.
    [11] Helton J C, Oberkampf W L. Special issure on alternative representations of epistemic uncertainty [J]. Reliability Engineering and System Safety, 2004,85(1-3):1-369.
    [12] Soundappan P, Nikolaidis E, Haftka R T, et al. Comparison of evidence theory and Bayesian theory for uncertainty modeling [J]. Reliability Engineering & System Safety, 2004, 85(1-3):295-311.
    [13] Samson S, Reneke J A, Wiecek M M. A review of different perspectives on uncertainty and risk and an alternative modeling paradigm [J]. Reliability Engineering and System Safety, 2009 (94): 558-567.
    [14] Limbourg P, Rocquigny E. Uncertainty analysis using evidence theory-confronting level-1 and level-2 approaches with data availability and computational constraints [J]. Reliability engineering and system safety, 2010 (95):550-564.
    [15] Apostolakis G. The concept of probability in safety assessment of technological systems[J]. Science, 1990, 250(4986):1359-1364.
    [16] Dubois D, Prade H. Possibility theory [M]. New York: Plenum Press, 1998.
    [17] Shafer G. A mathematical theory of evidence [M]. Princeton university press,Princeton, 1976.
    [18] Smets P, Kennes R. The transferable belief model [J]. Artificial Intelligence, 1994, 66:191-234.
    [19] Ben-Haim Y. Information-gap decision theory: decisions under severe uncertainty [M]. London: Academic Press, 2001.
    [20] Ferson S, Joslyn C A, Helton J C, Oberkampf W L, Sentz K. Summary from the epistemic uncertainty workshop: consensus amid diversity [J]. Reliability Engineering & System Safety, 2004,85(1-3):355-369.
    [21] Berger J O. Decision theory and Bayesian analysis[M]. New York: Springer, 1985:109-113.
    [22] Pender S. Managing incomplete knowledge: why risk management is not surfficient [J]. International journal of project management, 2001,19(1):79-87.
    [23] Zadeh L A. Fuzzy Logic [J]. Computer, 1988, 21(4):83-93.
    [24]吴青娥.不确定信息处理理论、方法及其应用[M].北京:科学出版社,2009.
    [25] Pawlak Z. Rough Sets [J]. International Journal of Computer and Information Sciences, 1982,11(5):341-356.
    [26]谭旭.扩展粗糙集模型及其在烟叶质量预测与评价中的应用[D].长沙:国防科学技术大学, 2008.
    [27] Dempster A P. Upper and lower probabilities induced by a multi-valued mapping [J]. Annals of Mathematical Statistics, 1967,(38):325-339.
    [28] Dempster A P. A generalization of Bayesian inference [J]. Journal of the Royal Statistical Society, 1968,(30):205-247.
    [29] Pearl J. Probabilistic reasoning in intelligent systems: network of plausible inference [M]. San Mateo, CA: Morgan Kaufmann, Inc., 1988.
    [30]石纯一,廖士中.定性推理方法[M].北京:清华大学出版社, 2002.
    [31] Kahneman D, Tversky A. Subjective probability: a judgement of representativeness [J]. Cognitive Psychology, 1972,3(3):430-454.
    [32]张英.智能决策推理技术的研究与应用[D].合肥:中国科学技术大学,2009.
    [33] Weber P, Medina-Oliva G, et al. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas [J]. Engineering Application of Artificial Intelligence, 2010.
    [34]王双成.贝叶斯网络学习、推理与应用[M].上海:立信会计出版社,2010.
    [35]张连文,郭海鹏.贝叶斯网引论[M].北京:科学出版社,2006.
    [36]黄友平.贝叶斯网络研究[D].北京:中国科学院计算技术研究所, 2005.
    [37]孙兆林.基于贝叶斯网络的态势估计方法研究[D].长沙:国防科学技术大学, 2005.
    [38]郭百钢.基于Bayes网络的项目投资风险评估与决策方法研究[D].南京:南京理工大学, 2004.
    [39]李海军等.贝叶斯网络理论在装备故障诊断中的应用[M].北京:国防工业出版社, 2009.
    [40] Denoeux T, Smets P. Classification using belief functions: Relationship between case-based and model-based approaches [J].IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2006, 36(6): 1395-1406.
    [41] Howard R A, Matheson J E. Influence Diagrams [J]. Decision Analysis, 2005,2(3):127-143.
    [42] Shachter R D. Evaluating Influence Diagrams [J]. Operations Research, 1986,34(6):871-882.
    [43]刘艳琼.基于影响图理论的武器装备研制项目风险分析方法及应用[D].长沙:国防科学技术大学, 2005.
    [44]詹原瑞.影响图理论方法与应用[M].天津:天津大学出版社,1995.
    [45] Yager R R, Liu L. Classic works of the Dempster–Shafer theory of belief functions[M]. Berlin/Heidelberg: Springer, 2008.
    [46] Yager R R. Comparing approximate reasoning and probabilistic reasoning using the Dempster-Shafer framework [J]. International Journal of Approximate Reasoning, 2009, 50(5):812-821.
    [47] Basir O, Yuan X H. Engine fault diagnosis based on multi-sensor information fusion using Dempster-Shafer evidence theory[J]. Information Fusion, 2007, 8(4):379-386.
    [48] Lin T C. Partition belief median filter based on Dempster-Shafer theory for image processing [J]. Pattern Recognition, 2008, 41(1):139-151.
    [49] Wu W Z. Attribute reduction based on evidence theory in incomplete decision systems [J]. Infromation Sciences, 2008,178(5):1355-1371.
    [50]肖明珠.基于证据理论的不确定性处理研究及其在测试中的应用[D].西安:电子科技大学, 2008.
    [51]龚本刚.基于证据理论的不完全信息多属性决策方法研究[D].合肥:中国科技大学, 2007.
    [52]陈增明.群决策环境下证据理论决策方法研究与应用[D].合肥:合肥工业大学, 2006.
    [53]周光中.基于D-S证据理论的科学基金立项评估问题研究[D].合肥:合肥工业大学, 2009.
    [54]张晨.基于证据理论的商业银行操作风险评价体系研究[D].合肥:合肥工业大学, 2009.
    [55] Zadeh L A. Review of books: A mathematical theory of evidence [J]. AI Magazine, 1984, 5(3):81-83.
    [56] Yager R R. On the Dempster-Shafer framework and new combination rules [J]. IEEE transaction On System, 1989, 41(2):93-137.
    [57] Inagaki T. Interdependence between Safety-Control Policy and Multiplesensor Schemes via Dempster-Shafer theory [J]. IEEE Transaction On Reliability, 1991, 40(2):182-188.
    [58] Smets P. The combination of evidence in the transferable belief model [J]. IEEE transaction on Pattern Analysis and Machine Intelligence, 1990,12(5):447-458.
    [59] Smets P. Analyzing the combination of conflicting belief functions[J]. Information Fusion, 2007,8(4):387-412.
    [60] Murphy C K. Combining belief functions when evidence conflicts. Decision support system, 2000,29(1):1-9.
    [61] Lefevre E, Colt O, et al. A generic framework for Resolving the Conflict in the Combination of belief structures [C]. The 3rd International conference on information fusion, 2000:182-188.
    [62] Lefevre E, Colot O, Vannoorenberghe P. Belief Functions Combination and Conflict Management [J]. Information Fusion, 2002,3(2):149-162.
    [63] Dubois D. Prade H. Representation and combination of uncertainty with belief functions and possibility measure [J]. Computational Intelligence, 1988 4:244-264.
    [64] Denoeux T. Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence [J]. Artificial Intelligence, 2008, 172: 234-264.
    [65]孙全.一种新的基于证据理论的合成公式[J].电子学报, 2000, 28(8):117-119.
    [66]张山鹰,潘泉,张洪才.证据推理冲突问题研究[J].航空学报, 2001, 22(4):369-372.
    [67]徐凌宇,张博锋,徐炜民. D-S理论中证据损耗分析及改进方法[J].软件学报, 2004,15(1):69-75.
    [68]邢清华,雷英杰,刘付显.一种按比例分配冲突度的证据推理组合规则[J].控制与决策, 2004, 19(12):1387-1390.
    [69]郭华伟,施文康,邓勇,陈智军.证据冲突:丢弃,发现或化解?[J].系统工程与电子技术, 2007,29(6):890-898.
    [70]杨风暴,王肖霞. D-S证据理论的冲突证据合成方法[M].北京:国防工业出版社, 2010.
    [71] Jousselme A L, Maupin P. On some properties of distance in evidence theory [C] // Workshop on the Theory of Belief Functions, France, Brest, 2010 April.
    [72] Ristic B, Smets P. The TBM global distance measure for the association of uncertain combat ID declarations [J], Information Fusion, 2006, 7:276-284.
    [73] Fixsen D, Mahler R P S. The modified Dempster-Shafer Approach to Classification [J]. IEEE Transaction On Systems, Man, and Cybernetics-Part A: Systems and Humans, 1997, 27(1):96-104.
    [74] Joussleme A L, Grenier D, Bosse E. A New Distance between Two Bodies of Evidence [J]. Information Fusion, 2001, 2(2):91-101.
    [75] Cuzzolin F. A Geometric Approach to the Theory of Evidence [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2008, 38(4):522-534.
    [76] Wen C, Wang Y, Xu X. Fuzzy Information Fusion Algorithm of Fault Diagnosis Based on Similarity Measure of Evidence [C] // In Advances in Neural Networks, Ser. Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2008, 5264:506-515.
    [77] Deng Y, Shi W K, Zhu Z F, Liu Q. Combining belief functions based on distance of evidence [J]. Decision Support Systems, 2004, 38:489-493.
    [78]郭华伟,施文康,刘清坤,邓勇.一种新的证据组合规则[J].上海交通大学学报, 2006, 40(11):1897-1900.
    [79]张兵,卢焕章.多传感器自动目标识别中的冲突证据组合方法[J].系统工程与电子技术, 2006, 28(6):857-860.
    [80]叶清,吴晓平,宋业新.基于权重系数与冲突概率重新分配的证据合成方法[J].系统工程与电子技术, 2006, 28(7):1014-1016.
    [81]李文立,郭凯红. D-S证据理论合成规则及冲突问题[J].系统工程理论与实践, 2010, 30(8):1422-1432.
    [82]杨善林,罗贺,胡小建.基于焦元相似度的证据理论合成规则[J].模式识别与人工智能, 2009, 22(2):169-175.
    [83]郭建全赵伟黄松岭一种改进的D-S证据合成规则系统工程与电子技术2009 31 3 606-609.
    [84]付超,杨善林,罗贺.异源证据间的一致度分析[J].系统工程理论与实践, 2009, 29(5):166-174.
    [85] Liu W. Analyzing the degree of conflict among belief functions [J]. Artificial Intelligence, 2006,170(11):909-924.
    [86]王小艺,刘载文等.一种基于最优权重分配的D-S改进算法[J].系统工程理论与实践, 2006, 11:103-107.
    [87]陆文星,梁昌勇,丁勇.一种基于证据距离的客观权重确定方法[J].中国管理科学, 2008, 16(6):95-99.
    [88]邢清华,刘付显.基于证据折扣优化的冲突证据组合方法[J].系统工程与电子技术, 2009, 31(5):1158-1161.
    [89] Yang J B, Singh M G. An evidential reasoning approach for multiple attribute decision making with uncertainty [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994, 24:1-18.
    [90] Yang J B, Sen P. A general multi-level evaluation process for hybrid MADM withuncertainty [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1994,24: 1458-1473.
    [91] Yang J B. Rule and utility based evidential reasoning approach for multiple attribute decision analysis under uncertainty [J]. European Journal of Operational Research, 2001, 131:31-61.
    [92] Yang J B, Xu D L. On the evidential reasoning algorithm for multiattribute decision analysis under uncertainty [J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2002, 32:289-304.
    [93] Yang J B, Wang Y M, Xu D L, Chin K S. The evidential reasoning approach for MCDA under both probabilistic and fuzzy uncertainties [J]. European Journal of Operational Research, 2006,171:309-343.
    [94] Wang Y M, Yang J B, Xu D L. Environmental Impact Assessment Using the Evidential Reasoning Approach [J]. European Journal of Operational Research, 2006, 174(3):1885-1913.
    [95] Xu D L, Yang J B, Wang Y M. The ER approach for multi-attribute decision analysis under interval uncertainties [J]. European Journal of Operational Research, 2006, 174(3):1914-1943.
    [96] Wang Y M, Yang J B, Xu D L. The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees [J]. European Journal of Operational Research, 2006, 175(1):35-66.
    [97] Guo M, Yang J B, Chin K S, Wang H W. Evidential reasoning approach for multi-attribute decision analysis under both fuzzy and interval uncertainty [J]. IEEE Transactions on Fuzzy Systems, 2009.
    [98] Chin K S, Wang Y M, Poon G K K, Yang J B. Failure mode and effects analysis using a group-based evidential reasoning approach [J]. Computers and Operations Research, 2009, 36:1768–1779.
    [99] Tang D W, Yang J B, Chin K S, Wong S Y, Liu X B. A methodology to generate a belief rule base for customer perception risk analysis in new product development [J].
    [100] Shafer G, Shenoy P P, Mellouli K. Propagating belief functions in qualitative Markov trees [J]. International Journal of Approximate Reasoning, 1987,(1):349-400.
    [101] Mellouli K, Shenoy P. Qualitative Markov networks [C] // Bouchon B, Yager R R (eds.). Uncertainty in Knowledge-Based Systems. Springer-Verlag Berlin Heidelberg, 1987:69-74.
    [102] Shenoy P P. Valuation-Based Systems: A framework for managing uncertainty in expert systems [C] // Zadeh L A, Kacprzyk J (eds.). Fuzzy logic for the Management of Uncertainty. John Wiley & Sons, NewYork, 1992:83-104.
    [103] Cano J, Delgado M, Moral S. An axiomatic framework for propagation uncertainty in directed acyclic networks [J]. International Journal of Approximate reasoning, 1993, 8:253-280.
    [104] Smets P. Belief Fucntions: the Disjunctive Rule of Combination and the Generalized Bayesian Theorem [J]. International Journal of Approximate Reasoning, 1993, 9:1-35.
    [105] Xu H, Smets P. Reasoning in Evidential Networks with Conditional Belief Functions [J]. International Journal of Approximate Reasoning, 1996(14):155-185.
    [106] Attoh-Okine N O. Aggregating evidence in pavement management decision-making using belief functions and qualitative Markov tree [J]. IEEE Transactions on Systems Man and Cybernetics, Part C-App.ications and Reviews, 2002, 32(3):243-251.
    [107] Bovee M, Srivastava R P, Mak B. A conceptual framework and belief-function approach to assessing overall information quality [J]. International Journal of Intelligent Systems, 2003, 18(1): 51-74.
    [108] Cobb B R, Shenoy P P. A Comparison of Bayesian and Belief Function Reasoning [J]. Information Systems Frontiers, 2003,5(4):345-358.
    [109] Yaghlane B B, Smets P, Mellouli K. Directed evidential networks with conditional belief functions. [C] // Nielsen T D, Zhang N L. (Eds.). Proceedings of ECSQARU-2003, LNAI 2711, Springer-Verlag, 2003, 291-305.
    [110] Yaghlane B B, Mellouli K. Inference in directed evidential networks based on the transferable belief model [J]. International Journal of Approximate Reasoning, 2008 (48):399-418.
    [111] Srivastava R P, Buche M W, Roberts T L. Belief Function Approach to Evidential Reasoning in Causal Maps [C] // Narayanan V K, Armstrong D (eds.). Causal Mapping for Information Systems and Technology Research: Approaches, Advances and Illustrations, Idea Group, Inc., 2005 :109-141.
    [112] Simon C, Weber P, Levrat E. Bayesian Networks and Evidence Theory to Model Complex Systems Reliability [J]. Journal of Computers, 2007, 2(1):33-43.
    [113] Weber P, Simon C. Dynamic evidential networks in system reliability analysis: A Dempster Shafer Approach [C]. 16th Mediterranean Conference on Control and Automation, MED’08, Ajaccio:France, 2008.
    [114] Simon C, Weber P, Evsukoff A. Bayesian networks inference algorithm to implement Dempster Shafer theory in reliability analysis [J]. Reliability Engineering and System Safety, 2008, 93:950-963.
    [115] Simon C, Weber P. Imprecise reliability by evidential networks [J]. Journal of Risk and Reliability, 2009, 223(2):119-131.
    [116] Simon C, Weber P. Evidential networks for reliability analysis and performance evaluation of systems with imprecise knowledge [J]. IEEE transaction on reliability, 2009, 58(1):69-87.
    [117] Trabelsi W, Yaghlane B B. BeliefNet Tool: An Evidential Network Toolbox for Matlab [C] // Magdalena L, Ojeda-Aciego M, Verdegay J L (eds.). Proceedings ofIPMU’08, 2008, 6:362-369.
    [118] Benavoli A, Ristic B, Farina A, et al. An Application of Evidential Networks to Threat Assessment [J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2):620-639.
    [119] Hong X, Nugent C, Mulvenna M, Mcclean S, Scotney B, Devlin S. Evidential fusion of sensor data for activity recognition in smart homes [J]. Pervasive and Mobile Computing, 2009, 5:236-252.
    [120] Lee H, Choi J S, Elmasri R. A Static Evidential Network for Context Reasoning in Home-Based Care [J]. IEEE Transactions on Systems Man and Cybernetics Part A- Systems and Humans, 2010,40(6):1232-1243.
    [121] Pollard E, Rombaut M, Pannetier B. Bayesian Networks vs. Evidential Networks---An Application to Convoy Detection [C] // Hullermeier E, Kruse R, Hoffmann F (eds.). IPMU 2010, Part I, CCIS 80. Springer-Verlag, 2010: 31–39.
    [122] Beynon M J. A novel technique of object ranking and classification under ignorance: An application to the corporate failure risk problem [J]. European Journal of Operational Research, 2005, 167(2): 493-517.
    [123] Helton J C, Oberkampf W L, Johnson J D. Competing Failure Risk Analysis Using Evidence Theory [J]. Risk Analysis, 2005, 25(4):973-995.
    [124] Demotier S, Schon W, Denoeux T. Risk assessment based on weak information using belief functions: A case study in water treatment [J]. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 2006, 36(3):382-396.
    [125] Sun L L, Srivastava R P, Mock T J. An information systems security risk assessment model under the Dempster-Shafer theory of belief functions [J]. Journal of Management Information Systems, 2006, 22(4): 109-142.
    [126] Khokhar R H, Bell D A, Guan J, Wu Q X. Knowledge-based risk assessment under uncertainty in engineering projects. [C] // Corchado E. et al. (eds.). IDEAL 2006, LNCS 4224, Springer-Verlag Berlin Heidelberg, 2006: 1296– 1303.
    [127] Utkin L V. Risk analysis under partial prior information and nonmonotone utility functions [J]. International Journal of Information Technology & Decision Making, 2007, 6(4): 625-647.
    [128] Srivastava R P, Mock T J, Turner J L. Analytical formulas for risk assessment for a class of problems where risk depends on three interrelated variables [J]. International Journal of Approximate Reasoning, 2007, 45(1): 123-151.
    [129] Gao L, Srivastava R P, Mock T J. An Evidential Reasoning Approach to Integrating Fraud Schemes into Fraud Risk Assessment [J]. Midyear AAA Audit Section Meeting, 2008.
    [130] Koc M L. Risk assessment of a vertical breakwater using possibility and evidence theories. Ocean Engineering, 2009, 36(14): 1060-1066.
    [131]朱静.基于D-S证据理论的网络安全风险评估模型[D].保定:华北电力大学, 2008.
    [132]顾孟钧.基于D-S证据理论的信息系统风险评估方法研究[D].杭州:浙江工业大学, 2008.
    [133]闫中海.基于证据理论的多属性风险决策研究[D].厦门:厦门大学, 2008.
    [134]张晨.基于证据理论的商业银行操作风险评价体系研究[D].合肥:合肥工业大学, 2009.
    [135]赵书强,程德才,刘璐.结合D-S证据推理的贝叶斯网络法制配电网可靠性评估中的应用[J].电工技术学报, 2009, 24(7):134-138.
    [136]段新生.证据理论与决策、人工智能[M].北京:中国人民大学出版社,1993.
    [137]甘应爱等.运筹学(第三版)[M].北京:清华大学出版社, 2005.
    [138]史定华,王松瑞.故障树分析技术方法和理论[M].北京:北京师范大学出版社, 1993.
    [139] Bobbio A, Portinale L, Minichino M. et al. Improving the analysis of dependable systems by mapping fault trees into Bayesian networks [J]. Reliability Engineering and System Safety, 2001,71(3):249-260.
    [140]周忠宝,董豆豆,周经伦.贝叶斯网络在可靠性分析中的应用[J].系统工程理论与实践, 2006, 26(6):95-100.
    [141]王广彦,马志军,胡起伟.基于贝叶斯网络的故障树分析[J].系统工程理论与实践, 2004,24(6):76-83.
    [142] Kjerulff U B, Madsen A L. Bayesian networks and influence diagrams [M]. New York:Springer, 2007.
    [143] Montibeller G, Belton V. Causal maps and the evaluation of decision option---a review [J]. Journal of the Operational Research Society, 2006,57(7):779-791.
    [144] Nadkarni S, Shenoy P P. A Bayesian network approach to making inferences in causal maps [J]. European Journal of Operational Research, 2001, 128(3):479-498.
    [145] Nadkarni S, Shenoy P P. A causal mapping approach to constructing Bayesian networks [J]. Decision Support Systems, 2004,38(2): 259-281.
    [146]张少中.基于贝叶斯网络的知识发现与决策应用研究[D].大连:大连理工大学, 2003.
    [147]王树林.知识处理论[M].北京:科学出版社, 2009.
    [148]张师超,严小卫,王成名.不确定性推理技术[M].桂林:广西师范大学出版社,1996.
    [149]汤永川.证据理论中条件独立性与知识更新规则[D].杭州:浙江大学博士后研究报告, 2005.
    [150] Couso I, Moral S. Independence concepts in evidence theory [J]. International Journal of Approximate Reasoning, 2010,51(7): 748-758.
    [151]袁家军.神舟飞船系统工程管理[M].北京:机械工业出版社, 2006.
    [152] U.S. NASA. Probabilistic risk assessment procedures guide for NASA managers and practitioners[R]. Washington, DC: Office of Safety and Mission Assurance NASA Headquarters, 2002.
    [153]郑恒,周海京. Credal网络在航天系统安全性评价中的应用//第7届国际可靠性、维修性、安全性学术会议,北京: 2007:251-257.
    [154] Saaty T L. The Analytic Hierarch Process [M]. New York: McGraw-Hill, 1980.
    [155] Xu Z. A survey of preference relations [J]. International Journal of General Systems, 2007,36(2):179-203.
    [156] Mata F, Martinez L, Herrera-Viedma E. An Adaptive Consensus Support Model for Group Decision-Making Problems in a Multigranular Fuzzy Linguistic Context [J]. IEEE Transactions on Fuzzy Systems, 2009, 17(2): 279-290.
    [157] Wang T C, Lin Y L. Applying the consistent fuzzy preference relations to select merger strategy for commercial banks in new financial environments [J]. Expert Systems With Applications, 2009, 36(3): 7019-7026.
    [158] Wang Y M, Fan Z P, Hua Z S. A chi-square method for obtaining a priority vector from multiplicative and fuzzy preference relations [J]. European Journal of Operational Research, 2007, 182(1): 356-366.
    [159] Cakir O. Post-optimality analysis of priority vectors derived from interval comparison matrices by lexicographic goal programming [J]. Applied Mathematics and Computation, 2008, 204(1): 261-268.
    [160] Lan J B, Lin J, Cao L J. An information mining method for deriving weights from an interval comparison matrix [J]. Mathematical and Computer Modelling, 2009, 50(3-4): 393-400.
    [161] Alonso S, Chiclana F, Herrera F. A consistency-based procedure to estimate missing pairwise preference values [J]. International Journal of Intelligent Systems, 2008, 23(2):155-175.
    [162] Alonso S, Cabrerizo F J, Chiclana F. Group Decision Making with Incomplete Fuzzy Linguistic Preference Relations [J]. Internatioanl Journal of Intelligent Systems, 2009, 24(2):201-222.
    [163] Gong Z W. Least-square method to priority of the fuzzy preference relations with incomplete information [J]. International Journal of Approximate Reasoning, 2008, 47(2): 258-264.
    [164] Herrera-Viedma E, Alonso S, Chiclana F. A consensus model for group decision making with incomplete fuzzy preference relations [J]. IEEE Transactions onFuzzy Systems, 2007, 15: 863-877.
    [165] Jiang Y P, Fan Z P. An approach to group decision making based on incomplete fuzzy preference relations [J]. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2008, 16(1): 83-94.
    [166] Yang J B, Liu J, Xu D L, Wang J, Wang H W. Optimization models for training belief rule based systems [J]. IEEE Transactions on Systems, Man, and Cybernetics– Part A, 2007, 37(4): 569-585.
    [167] Lai Y J, Liu T Y, Hwang C L. TOPSIS for MODM [J]. European Journal of Operational Research, 1994, 76(3):486-500.
    [168] Abo-Sinna M A, Amer A H. Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems [J]. Applied Mathematics and Computation, 2005, 162(1):243-256.
    [169]粟塔山.最优化计算原理与算法程序设计[M].长沙:国防科技大学出版社, 2002.
    [170] Xu D L, Liu J, Yang J B, et al. Inference and learning methodology of belief-rule-based expert system for pipeline leak detection [J]. Expert Systems with Applications, 2007, 32(1): 103-113.
    [171] Zhou Z J, Hu C H, Yang J B, et al. Online updating belief-rule-based systems using the RIMER approach [J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2009.
    [172] Zhou Z J, Hu C H, Yang J B, Xu D L, Zhou D H. Online updating belief-rule-based system for pipeline leak detection under expert intervention [J]. Expert Systems with Applications, 2009, 36(4): 7700-7709.
    [173]郑小平,高金吉等.事故预测理论与方法[M].北京:清华大学出版社, 2009.