应用基因芯片技术探索中国汉族女性皮肤光老化及雌激素源性皮肤固有老化相关基因及作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:我们通常将皮肤老化分为内源性老化与外源性老化两类。影响后者最重要的因素就是紫外线UVA和UVB的照射,由此导致的皮肤老化即光老化。紫外线辐射早期仅引起皮肤皱纹,萎缩,色素沉着等老化表现,后期严重时则可诱发相应的皮肤疾病,甚至皮肤肿瘤。虽然目前对于光老化的研究很多,但对其生物学机制的了解尚不够深入。同时,目前对于皮肤光老化研究仍主要集中于皮肤单种细胞或皮肤亚单位(真皮,表皮或结缔组织)研究范围中,少有对全层皮肤整体的研究,尤其对亚裔汉族女性全层皮肤光老化研究甚少。本研究期望以汉族女性全层皮肤作为研究对象在基因水平上研究皮肤光老化的相关基因及生物学机制。
     研究方法:我们选取来我院做全颜面除皱手术的21名女性患者作为研究对象,所有患者均统一了光老化程度,居住地域,发式,月经史,家族史、既往疾病史等可能存在的影响因素。收集患者手术过程中废弃的耳前皮肤(光暴露区)和耳后皮肤(光保护区)作为配对的光照组和对照组,应用Illumina芯片进行全基因组扫描寻找差异基因。对结果进行相应的统计学分析,并应用G0对基因进行功能聚类分析,应用WebGestalt, DAVID和GSEA软件对基因进行功能富集分析。应用Q-RT-PCR对差异基因进行进一步验证。
     研究结果:我们共发现1762个差异表达基因(P<0.05)。其中,上调差异表达基因829个,下调差异表达基因933个。通过GO数据库对基因功能注释并进行基因功能聚类分析发现,这些差异表达基因主要参与:免疫应答,黏附与受体相关生物学过程,信号转导,转录调节,炎症反应,酶相关生物学过程,金属离子结合,胶原与纤维蛋白相关生物学过程,细胞凋亡,血管发生,细胞增殖分化和发育,皮肤发育,代谢等生物学过程。同时,我们应用WebGestalt, DAVID和GSEA软件中的" KEGG Table and Maps ", " KEGG Functional Annotation Chart"以及"KEGG pathways gene sets "功能模块进行分析,发现该差异基因共富集通路11个,其中上调通路3个,下调通路8个,包括细胞外基质受体交互作用,TGF-β信号通路,细胞循环,缬氨酸、亮氨酸、异亮氨酸降解,精氨酸、脯氨酸代谢,果糖、甘露糖代谢,鞘糖脂生化合成,色氨酸代谢,花生四烯酸代谢,氮代谢等。选择HOXA5,LEPR, CLDN5,LAMC3以及CGA基因进行Q-RT-PCR验证,结果一致性好。
     研究结论:我们的研究显示皮肤光老化是一个由多个基因和生物学通路参与的复杂生物学过程。其中有部分结果与以往研究互为验证,但是仍然有很多基因及生物学通路以往未有类似报道。考虑我们是以全层皮肤作为研究对象,能更客观反应了光老化皮肤的生物学网络作用。我们的研究结果将为进一步了解皮肤光老化机制及其相关疾病发生机理和临床治疗提供可信线索。我们仅仅对相关基因和生物学通路做了初步的探索和展示,仍需要更细致和深入的研究来了解其具体的作用机制。
     研究背景:皮肤老化像一面镜子可以反映人体的整体老化进程。皮肤老化可根据老化因素分为外源性老化和内源性老化。内源性老化主要受遗传背景、机体内在内分泌环境、代谢等影响。雌激素作为一种主要的性激素,对皮肤内源性老化,尤其对女性内源性皮肤老化发挥重要作用。女性绝经后,雌激素分泌水平明显下降,并随着年龄增长而逐年递减。伴随雌激素变化,女性皮肤可出现明显老化包括皮肤萎缩,干燥,皱纹增生,潮红等。既往很多研究发现,雌激素与皮肤内源性老化存在密切联系,同时,雌激素替代治疗也间接证明了雌激素对皮肤老化的作用。但是,雌激素对皮肤内源性老化的具体生物学机制目前尚不明确,尤其对于汉族女性雌激素源性内源性皮肤老化机制缺乏清晰的了解。而且,目前对于雌激素源性皮肤老化研究仍主要集中于皮肤单种细胞或皮肤亚单位(真皮,表皮或结缔组织)研究范围中,少有对全层皮肤整体的研究。本研究以全层皮肤作为研究对象在基因水平上探索雌激素源性皮肤老化的相关基因及生物学机制。
     方法:我们选取来我院做全颜面除皱手术的13名老年女性患者(年龄范围46-55岁,平均50.7岁),根据其月经情况分为2组:绝经组与未绝经组。所有患者均统一了家族史、既往疾病史等可能存在的影响因素。收集患者手术过程中废弃的耳后皮肤(光保护区),处理成全层皮肤后液氮保存,提取RNA并进一步应用Illumina芯片进行全基因组扫描寻找差异基因。对结果进行相应的统计学分析,并对基因进行功能聚类分析和功能富集分析。应用Q-RT-PCR对差异基因进行进一步验证。
     结果:我们共发现244个差异表达基因(P<0.05)。其中,上调差异表达基因131个,下调差异表达基因113个。通过G0数据库对基因功能注释并进行基因功能聚类分析发现,这些差异表达基因主要参与:新陈代谢、细胞黏附、金属离子结合、转录、信号转导、细胞凋亡、生物合成、泛素循环、免疫应答、炎症、发育等生物学过程。同时,我们应用WebGestalt工具和KEGG数据库对基因进行功能富集分析发现该差异基因共富集通路11个,包括赖氨酸降解、β丙氨酸代谢、MAPK信号通路、胰岛素信号通路、柠檬酸盐循环通路、RNA降解通路等。
     结论:我们的研究显示雌激素与皮肤内源性老化存在密切的联系。这是一个由多个基因和生物学通路参与的复杂过程。其中有部分结果与以往研究互为验证,但是仍然有很多基因及生物学通路以往未有类似报道。考虑我们是以皮肤作为研究对象,更客观反应了皮肤内源性老化的生物学网络作用。我们的研究结果将对雌激素源性皮肤老化相关疾病以及雌激素替代治疗的临床研究提供可信线索。我们仅仅对相关基因和生物学通路做了一个初步探索和展示,仍需要更细致和深入的研究来了解其具体的作用机制。
Background and Objective Skin aging can be classified into intrinsic aging and extrinsic aging. The latter is mainly influenced by ultraviolet, including UVA and UVB, known as photoaging. Photoaging is first characterized with the alteration in wrinkles, analosis and dyspigmentation, et al, and then the photoaging will develop into severe skin diseases, even skin tumour. Although significant advances in recent years have been made in both the organ culture of skin, little is known in detail about the biological processes and the genes involved in them, especially in Chinese Ham females'skin. Further more, most of these studies are mainly focused on some skin cell (e.g fibroblast, keratinocyte, or melanocytes) or some subunit of skin only (e.g epidermis, dermis, or connective tissue), ignoring the whole biological network based on complete skin tissue. Our study is designed to find out all possible genes and biologic processes involved in skin photoaging based on Chinese Han female full-thickness skin at by microarray technology.
     Methods 21 healthy Chinese Han women were recruited from Plastic Surgery Hospital of PUMC, Beijing, China. All subjects were similar in photoaging degree, living and climate condition, hair style, and all subjects were healthy without special aging related family history nor smoking and alcoholism history. All skin samples were obtained from the abandoned skin tissue of pre-auricular (UV explosed) and post-auricular (UV protected) during rhytidectomy surgery and were made into full-thickness skin for further research. Illumina beadchips were used for differentially expressed genes analysis. The differentially expressed genes were then analysed in functional clustering with GO database and functional enriched with WebGestalt, DAVID, and GSEA. Q-RT-PCR was applied to further confirmed the chosen genes.
     Results Identification of the DEGs among these expressed genes then yielded 1762 genes (up-regulated 829 genes, down-regulated 933 genes), which passed the cutoff of P<0.05. All genes were annotated and functional clustered with GO gene database into immune response, cell adhension and receptor related, signal transduction, transcription regulation, inflammation, enzyme related, mental iron binding, collagen and fibrin, cell apoptosis, vasculogenesis, cell proliferation,differentiation, and development, skin development, metabolism, et al. All the genes were functional enriched with analysis tools of WebGestalt, DAVID, GSEA and KEGG database into 11 different pathway, such as ECM-receptor interaction (ECM), TGF-beta signaling pathway (TGF), Cell cycle (CC),Valine, leucine and isoleucine degradation (VLI), Arginine and proline metabolism (APM), Fructose and mannose metabolism (FMM), Glycolysis/ Gluconeogenesis (GG), Glycosphingolipid biosynthesis-ganglioseries (GBG), Tryptophan metabolism (TM), Arachidonic acid metabolism (AAM), Nitrogen metabolism (NM)Lysine degradation, Beta-Alanine metabolism, MAPK signaling pathway, Insulin signaling pathway, Citrate cycle(TCA cycle), mRNA degradation, et al. Five genes, HOXA5,LEPR,CLDN5,LAMC3 and CGA, were chosen for further confirmed by Q-RT-PCR and the Results of the quantitative RT-PCR demonstrated concordance in direction of change between the two different platforms.
     Conclusion Our study reveals that skin photoaging is a complex biological process with many genes and biological pathway involved in it. Except few genes and pathway reported in the past research, there is still a great difference in results between the present and previous studies. Most of the related genes and biological pathways involved in this field haven't been reported yet till now. We carried out this study based on full-thickness skin, focusing more on the biological processes network in the whole skin tissue, which provided us more believable and comprehensive information about skin photoaging of Chinese Han female. It will provide us insight information about the effect of skin photoaging and skin photoaging related skin diseases. Our study is a only display of the skin photoaging related genes and pathways. Further study is needed to investigate the biological functions genes and related biological pathway in skin photoaging.
     Background and Objective The skin is a mirror of the aging process in human. Skin aging can be classified into extrinsic aging and intrinsic aging. The latter is mainly influenced by genetic factor-induced or alterations of the endocrine environment-induced. Estrogen, as one of the sex hormone, plays an important role in intrinsic skin aging, especially in the skin aging of menopausal women. In women, estrogen levels decline rapidly at menopaluse as a result of the loss of ovarian follicles and decrease gradually with the age. This change will accelerate skin aging. It leads to the alternations in skin of dryness, atrophy, fine wrinkling, and hot flashes. Many studies have proved the positive corelation between estragon and intrinsic skin aging directly, and the availability of hormone replacement treatment (HRT) also demonstrates the beneficial effect of estrogen in skin aging indirectly too. Although significant advances in recent years have been made in both the organ culture of skin, little is known in detail about the biological processes and the genes involved in them, especially in Chinese Ham females'skin. Further more, most of these studies are mainly focused on some skin cell (e.g fibroblast, keratinocyte, or melanocytes) or some subunit of skin only (e.g epidermis, dermis, or connective tissue), ignoring the whole biological network based on complete skin tissue. Our study is designed to find out all possible genes and biologic processes involved in estrogen-associated intrinsic skin aging based on Chinese Han female full-thickness skin by microarray technology.
     Methods 13 healthy Chinese Han women (age ranged 46-55y, average age 50.7y) were recruited from Plastic Surgery Hospital of PUMC, Beijing, China. They were divided into two groups according to their menstrual history. All subjects were healthy without special aging related family history nor smoking and alcoholism history. All skin samples were obtained from the abandoned skin tissue of post-auricular (UV protected) during rhytidectomy surgery and were made into full-thickness skin stored in liquid nitrogen immediately for future research. Illumina beadchips were used for differentially expressed genes analysis. The differentially expressed genes were then analysed in functional clustering and enrichment. Q-RT-PCR was applied to confirmed the chosen genes.
     Results Identification of the DEGs among these expressed genes then yielded 244 genes (up-regulated 131 genes, down-regulated 113 genes), which passed the cutoff of P<0.05. All 244 genes were annotated and functional clustered with GO gene database into metabolism, cell adhension, mental iron binding, transcription, signal transduction, cell apoptosis, biosynthesis, ubiquitin cycle, immune response, inflammation, development, et al. All the 244 genes were functional enriched with WebGestalt tool and KEGG database into 11 different pathway, such as Lysine degradation, Beta-Alanine metabolism, MAPK signaling pathway, Insulin signaling pathway, Citrate cycle(TCA cycle), mRNA degradation, et al.
     Conclusion Our study reveals that there is a close correlation between the estrogen and intrinsic skin aging with many genes and biological pathway involved in it. Except few genes and pathway reported in the past research, there is still a great difference in results between the present and previous studies. Most of the related genes and biological pathways involved in this field haven't been reported yet till now. We carried out this study based on full-thickness skin, focusing more on the biological processes network in the whole skin tissue, which provided us more believable and comprehensive information about estrogen-associated intrinsic skin aging of Chinese Han female. It will provide us insight information about the effect of estrogen in skin aging and estrogen-related skin diseases. Further study is needed to investigate the biological functions genes and related biological pathway in estrogen-associated intrinsic skin aging.
引文
[1]刘秀珍,张如意,栾海云.基因芯片技术及应用[J].滨州医学院学报,2003,30(1):57-60.
    [2]黄坚,李昌煜.基因芯片技术在衰老机制和抗衰老中药研究中的应用[J].现代中西医结合,2007,16(14):2009-2012.
    [3]Lee CK, Klopp RG, Weindruch R, et al. Gene exprission profile of aging and it sretardation by caloric restriction[J]. Science,1999,285:1390-1393.
    [4]Tollet-Egnell P, Flores-Morales A, Stahlberg N, et al. Gene expression profile of the aging process in rat liver normalizing effects of growth hormone replacement [J]. Mol Endocrinol,2001,15:308-318.
    [5]Halaschek-Wiener J, Khattra JS. Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression[J]. Genome Res,2005,15:603-615.
    [6]Urschitz J, Iobst S, Urban Z, et al. A serial analysis of gene expression in sun-damaged human skin[J]. Journal of Investigative Dermatology,2002,119:3-13.
    [7]Aubin F. Mechanisms involved in ultraviolet light-induced immunosuppression[J]. Eur J Dermatol,2003,13:515-523.
    [8]Weiss E, Mamelak AJ, La Morgia S, et al. The role of interleukin 10 in the pathogenesis and potential treatment of skin diseases [J]. J Am Acad Dermatol, 2004,50:657-675.
    [9]Svobodova A, Walterova D, Vostalova J. Ultraviolet light induced alteration to the skin[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub,2006, 150(1):25-38.
    [10]Hussein MR. Ultraviolet radiation and skin cancer:molecular mechanisms[J]. J Cutan Pathol,2005,(32):191-205.
    [11]Pinnell SR. Cutaneous photodamage, oxidative stress, and topical antioxidant protection[J]. J Am Acad Dermatol,2003,48:1-19.
    [12]Chiang HM, Lin TJ, Chiu CY, et al. Coffea arabica extract and its constituents prevent photoaging by suppressing MMPs expression and MAP kinase pathway [J]. Food and Chemical Toxicology,2011,49(1):309-318.
    [13]Seiji Kondo. The roles of cytokines in photoaging[J]. Journal of Dermatological Science,2008,23(Suppl.1):S30-S36.
    [14]孙素姣.紫外线致皮肤胶原纤维光损伤的研究进展[J].中国美容医学,2009,18(11):1701-1703.
    [15]Xu Y, Fisher GJ. Ultraviolet (UV) light irradiation induced signal transduction in skin photoaging[J]. Journal of Dermatological Science,2005, Supp11:S1-S8.
    [16]Shi Y, Massagu J. Mechanisms of TGF-[beta] signaling from cell membrane to the nucleus[J]. Cell,2003,113:685-700.
    [17]Fessing M, Atoyan R, Shander B, et al. BMP Signaling Induces Cell-Type-Specific Changes in Gene Expression Programs of Human Keratinocytes and Fibroblasts[J]. Journal of Investigative Dermatology,2009,130:398-404.
    [18]Owens P, Han G, Li A, et al. The role of Smads in skin development[J]. Journal of Investigative Dermatology,2008,128:783-790.
    [19]Quan T, He T, Voorhees J, et al. Mechanisms of signal transduction-Ultraviolet irradiation blocks cellular responses to transforming growth factor-b by down-regulating its type-II receptor and inducing Smad7[J]. Journal of Biological Chemistry,2001,276:26349-26356.
    [20]Quan T, He T, Kang S, et al. Solar Ultraviolet Irradiation Reduces Collagen in Photoaged Human Skin by Blocking Transforming Growth Factor-{beta} Type II Receptor/Smad Signaling[J]. American Journal of Pathology,2004,165:741.
    [21]Botchkarev V. Bone Morphogenetic Proteins and Their Antagonists in Skin and Hair Follicle Biology&ast[J]. Journal of Investigative Dermatology,2003,120:36-47.
    [22]Kambayashi H, Yamashita M, Odake Y, et al. Epidermal changes caused by chronic low-dose UV irradiation induce wrinkle formation in hairless mouse [J]. J Dermatol Sci,2001,27 Suppl 1:S19-25.
    [23]Robinson M, Binder R, Griffiths C. Genomic-driven insights into changes in aging skin[J]. Journal of drugs in dermatology,2009; 8(s7):s8-11.
    [24]Kim E, Jin X, Kim Y, et al. UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skinphotoaging[J]. Journal of dermatological science,2010,57:19-26.
    [25]Krishnan K, Harbottle A, Birch-Machin M. The use of a 3895 bp mitochondrial DNA deletion as a marker for sunlight exposure in human skin[J]. Journal of Investigative Dermatology,2004,123:1020-1024.
    [26]Berneburg M, Gremmel T, Kurten V, et al. Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences[J]. Journal of Investigative Dermatology,2005,125:213-220.
    [27]Wilson M, Morley J. Invited review:Aging and energy balance[J]. Journal of Applied Physiology,2003,95:1728.
    [28]Jacobson E, Giacomoni P, Roberts M, et al. Optimizing the energy status of skin cells during solar radiation[J]. J Photochem Photobiol B,2001,63:141-147.
    [29]Rabe JH,Mamelak AJ,McElgunn PJ,et al. Photoaging:mechanisms and repair [J]. J Am Acad Dermatol,2006,55(1):1-19.
    [30]孙志坚,于海洋.抗衰老学[M].北京:军事医科出版社,2006:436-440.
    [31]Lewis KG, Bercovitch L, Dill SW, et al. Acquired disorders of elastic tissue:part Ⅰ. Increased elastic tissue and solar elastotic syndromes[J]. J Am Acad Dermatol, 2004,51:1-21.
    [32]Chung J. Photoaging in Asians[J]. Photodermatology, Photoimmunology & Photomedicine,2003,19:109-121
    [33]刘娜,王学民.光老化的皮肤改变及其机制[J].岭南皮肤性病科杂志,2005,12(2):189-191.
    [34]马慧军,朱文元.皮肤光老化的临床评价[J].中华医学美学美容杂志,2005,11(4):250-252.
    [35]Menon EL, Morrison H. Formation of singlet oxygen by urocanic acid by UVA irradiation and some consequences thereof[J]. Photochem Photobiol,2002,75:565-569.
    [36]Berneburg M, Plettenberg H, Medve-Konig K, et al. Induction of the photoaging-associated mitochondrial common deletion in vivo in normal human skin[J]. J Invest Dermatol,2004,122:1277-1283.
    [37]Mamelak AJ, Kowalski J, Murphy K, et al. Downregulation of NDUFA1 and other oxidative phosphorylation related genes is a consistent feature of basal cell carcinoma[J]. Exp Dermatol,2005,14:336-348.
    [38]Yoshihito Kawashima, Nobuaki Ohto, Akinori Kiso, et al. Molecular alterations of decorin in photoaging Process[J]. Journal of Dermatological Science Supplement, 2006,2:S51-S56.
    [39]Yano K, Kajiya K, Ishiwata M, et al. Ultraviolet B-induced skin angiogenesis is associated with a switch in the balance of vascular endothelial growth factor and thrombospondin-1 expression[J]. J Invest Dermatol,2004,122:201-208.
    [40]Howell BG, Wang B, Freed I, et al. Microarray analysis of UVB-regulated genes inkeratinocytes:downregulation of angiogenesis inhibitor thrombospondin-1 [J]. J Dermatol Sci,2004,34:185-194.
    [41]张丹丹,杨智荣.光老化与皮肤免疫机制[J].中华实用中西医杂志,2007,20(22):1970-1971.
    [42]Shinichi Moriwaki, Yoshito Takahashi. Photoaging and DNA repair [J]. Journal of Dermatological Science,2008,50:169-176.
    [43]Heck DE, Gerecke DR, Vetrano AM, et al. Solar ultraviolet radiation as a trigger of cell signal transduction[J]. Toxicol Appl Pharmacol,2004,195:288-297.
    [44]Polte T, Tyrrell RM. Involvement of lipid peroxidation and organic peroxides in UVA-induced matrix metalloproteinase-1 expression[J]. Free Radic Biol Med, 2004,36:1566-1574.
    [45]Brennan M, Bhatti H, Nerusu KC, et al. Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin[J]. Photochem Photobiol,2003,78:43-48.
    [46]Reelfs O, Tyrrell RM, Pourzand C. Ultraviolet A radiation-induced immediate iron release is a key modulator of the activation of NF-kB in human skin fibroblasts[J]. J Invest Dermatol,2004,122:1440-1447.
    [47]Nagpal S, Chandraratna RAS. Recent developments in receptorselective retinoids[J]. Curr Pharm Des,2000,6:919-931.
    [48]Andersson E, Rosdahl I, Torma H,et al. Differential effects of UV irradiation on nuclear retinoid receptor levels in cultured keratinocytes and melanocytes[J]. Exp Dermatol,2003,12:563-571.
    [49]Rijken F, Bruijnzeel PLB, van Weelden H, et al.Responses of black and white skin to solar-simulating radiation differences in DNA photodamage, infiltrating neutrophils, proteolytic enzymes induced, keratinocyte acti-vation, and IL-10 expression[J]. J Invest Dermatol,2004,122:1448-1455.
    [50]Oh JH, Chung AS, Steinbrenner H, et al. Thioredoxin secreted upon ultraviolet A irradiation modulates activities of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in human dermal fibroblasts[J]. Arch Biochem Biophys ,2004,423:218-226.
    [51]高莹,孙建方.皮肤光老化的外用药物预防与治疗[J].国际皮肤性病学杂志,2006,32(5):276-278.
    [52]Sambandan DR, BA,Ratner D. Sunscreens:An overview and update[J]. J AM ACAD DERMATOL,2011,64(4):748-758.
    [53]Sang Min Kim, Byung Ho Oh, Yang Won Lee, et al.The relation between the amount of sunscreen applied and the sun protection factor in Asian skin[J]. J Am Acad Dermatol,2010,62:218-22.
    [54]王宝玺.皮肤光老化机制及其防治研究进展[J].中华医学杂志,2007,87(20):1375-1376.
    [55]王医林,邓丹琪.皮肤光老化的预防及治疗[J].皮肤病与性病,2009,31(1):24-27.
    [56]Zussman J, Ahdout J, Kim J. Vitamins and photoaging:Do scientific data support their use[J]? Journal of the American Academy of Dermatology,2010,63(3):507-525.
    [57]Lee WC, Tsai TH. Preparation and characterization of liposomal coenzyme Q10 for in vivo topical application[J]. International Journal of Pharmaceutics,2010,395(1-2): 78-83.
    [58]Katiyar SK. Green tea prevents non-melanoma skin cancer by enhancing DNA repair[J]. Archives of Biochemistry and Biophysics,2010,508:152-158.
    [59]Katiyar SK. Skin photoprotection by green tea:antioxidant and immunomodulatory effects[J]. Curr Drug Targets Immune Endocr Metabol Disord,2003,3:234-242.
    [60]Bermann PE Aging Skin:Causes, Treatments, and Prevention[J]. Nursing Clinics of North America,2007,42(3):485-500.
    [61]Cauchard JH, Berton A, Godeau G, et al. Activation of latent transforming growth factor beta 1 and inhibition of matrix metaUoprotease activity by a thrombospondin—like tripeptide linked to elaidic acid[J]. Biochem Pharmacol,2004, 67:2013-2022.
    [62]Alberts DS, Dorr RT, Einspahr JG, et al. Chemoprevention ofhuman actinic keratoses by topical 2-(difluoromethyl)-dl-ornithine[J]. Cancer Epidemiol Biomarkers Prev, 2000,9:1281-1286.
    [63]Budiyanto A, Ahmed NU, Wu A. et al. Protective efrect oftopically applied olive oil against photocarcinogenesis following UVB exposure of mice[J]. Carcinogen esis, 2000,21:2085-2090.
    [64]王倩.中药延缓皮肤衰老的研究现状[J].中国美容医学,2006,15(2):219-221.
    [65]钱荣华,竹剑平.珍珠粉延缓衰老作用的实验研究[J].浙江临床医学,2003,5(9):718.
    [66]贺建荣.黄芪多糖、黄芪总黄酮甘草次酸以及阿魏酸清除氧自由基作用的研究[J].中国美容医学,2001,10(3):191.
    [67]Philip Y. Lam, Chung Wai Yan, Po Yee Chiu,et al. Schisandrin B protects against solar irradiation-induced oxidative stress in rat skin tissue[J]. Fitoterapia,2011,82: 393-400.
    [68]周展超.光老化:激光与光子治疗[J].中国医学院学报,2007,29(2):275-227.
    [69]肖燕,李青峰.化学剥脱术治疗皮肤光老化[J].实用美容整形外科杂志,2003,14(1):49-50.
    [1]Marisa TP, Coldman KZ, et al. Effect of topical postmenopausal women under oral hormone therapy:A pilot study[J]. Eur J Obstet Gynecol Reprod Biol,2007,130: 202-205.
    [2]Pierard FC, Cornil F, Dehavay J, et al. Climacteric skin ageing of the face—a prospective longitudinal comparative trial on the effect of oral hormone replacement therapy[J]. Maturitas,1999,32:87-93.
    [3]Hall G, Phillips TJ. Estrogen and skin:The effects of estrogen,menopause, and hormone replacement therapy on the skin[J]. J AM AC AD DERMATOL,2005, 53:555-568.
    [4]Kanda N, Watanabe S.17b-estradiol inhibits oxidative stress-induced apoptosis in keratinocytes by promoting bcl-2 expression[J]. J Invest Dermatol,2003,121:1500-1509.
    [5]Sattar Ansar Ahmed. The immune system as a potential target for environmental estrogens (endocrine disrupters):a new emerging field[J]. Toxicology,2000,150: 191-206.
    [6]Weiskopf D, Weinbereger B, Grubeck-Loebenstein B. The aging of the immune system[J]. Transpl Int,2009,22 (11):1041-50.
    [7]Krabbe KS, Pedersen M, Brunsgaard H. Inflammatory mediators in the elderly [J]. Exp Gerontol,2004,39(5):687-699.
    [8]Gameiro CM, Rom F, Castelo-Branco C. Menopause and aging:Changes in the immune system-Areview[J]. Maturitas,2010,67:316-320.
    [9]Jacobson, DL, Gange, SJ, Rose, NR, et al. Epidemiology and estimated population burden of selected autoimmune diseases in the United States[J]. Clin. Immunol Immunopathol,1997,84:223-243.
    [10]Chen C, Matesie LE. The Nedd4-like family of E3 ubiquitin ligases and canser[J]. Cancer Metastasis Rev,2007,26(3-4):587.
    [11]Meiners S, Ludwig A, Stangl V, et al. Proteasome inhibitors:poisons and remedies[J]. Med Res Rev,2008,28(2):309.
    [12]田真,张卓莉,周炜.泛素连接酶与结缔组织病的关系[J].中华临床免疫和变态反应杂志,2010,4(3):229-233.
    [13]张丹丹.泛素一蛋白酶体通路与肿瘤发生的研究进展[J].用癌症杂志,2010,25(6):672-675.
    [14]Ficke B, Heink S, Stefen J, et al. The proteasome maturation protein POMP facilitates major steps of 20S proteasonm formation at the endoplasmic reticulum[J]. EMBO Rep,2007,8(12):1170.
    [15]Ciechanover A. The ubiquitinp roteolytic system[J]. Neurology,2006,66(Suppl 1): s7.
    [16]Bregegere F, Milner Y, Friguet B..The ubiquitin-proteasome system at the crossroads of stress-response and ageing pathways:A handle for skin care[J]? Ageing Research Reviews,2006,5:60-90.
    [17]Zollner, TM, Podda M, Pien C, et al. Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model. J Clin Invest.2002; 109:671-679.
    [18]隋丽华,叶华虎.肉毒碱的生物学特性、检测方法及应用[J].中国比较医学杂志,2008,18(10):56.
    [19]Ramsay RR, Gandour RD, van der Leij FtR. Molecular enzymology of carnitine transfer and transport[J]. Biochimica Biophysica Acta,2011,1546:21-43.
    [20]乔玉清,周晓宇,尹冬冬.人体必需的营养物质-肉毒碱[J].化学教育,2008,(10):7-10.
    [21]Thangasamy T, Subathra M, Sittadjody S, el al. Role of L-carnitine in the modulation of immune response in aged rats[J]. Clinica Chimica Acta,2008,389(1-2):19-24.
    [22]Trookman N, Thomas J. A formultion containing L-carnitine and other nutrients improves skin energy reserves and oxygen consumption in skin cells and improves the appearance of aging skin[J]. J Am Acad Dermatol,2009:826.
    [23]Nelson, David L, Michael MC. Lehninger Principles of Biochemistry [M]. New York Freeman WH and company,2005:841.
    [24]Wu G, Ott TL, Knabe DA, et al. Amino acid Composition of the fetal pig[J]. J Nutr, 1999,129(5):1031-1038.
    [25]Wu G, Morris Jr SM. Arginine metabolism:nitric oxide and beyond[J]. Biochem J, 1998,336:1-17.
    [26]Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases:structure, function and inhibition[J]. Biochem J,2001,357:593-615.
    [27]Palka J, Kama E, Miltyk W. Fibroblast chemotaxis and prolidase activity modulation by insulin-like growth factor Ⅱ and manose-6-phosphate[J]. Mol Cell Biol,1997, 168:177-183.
    [28]Vanhoof G, Goossens F, De Meester I, et al. Proline motits in peptides and their biological processing [J]. FASEB J,1995,9(9):736-744.
    [29]Emmerson KS, Phang JM. Hydrolysis of proline dipeptides completely fulfills the proline requirement in a prolineauxotropic Chinese hamster ovary cell line[J]. J Nutr, 1993,123:909-914.
    [30]赵海生,顾军.MAPK信号转导通路与银屑病[J].中国皮肤性病学杂志,2007,21(3):84-186
    [31]Anne T, Funding, Johansen C, et al. Mitogen-and Stress-Activated Protein Kinase 2 and Cyclic AMP Response Element Binding Protein are Aetivated in Ixesional Psoriatic Epidermis[J]. Journal of Investigative Dermatology,2007,127(54):592-597.
    [32]Johanser CK, Kragball, Brinster RL, et al. The mitogen-activated protein kinases p384 and ERKI/2 are increased in lesional psoriatic skin cutaneous[J]. Biology,2005, 10(11):1365-1369.
    [33]庞勤,何黎.MAPK信号传导通路与相关皮肤病[J].皮肤病与性病,2010,32(12):15-17.
    [34]张秀霞,董慧春,徐云云.MAPK信号转导途径及其在雌激素作用的研究进展[J].海峡药学,2010,22(6):11-13.
    [35]Flores—Delgado G, Bringas P, Buckley S, et al. Nongenomic estrogen action in human lung myofibroblasts[J]. Biochem Biophys Res Commun,2001,283(3):661-667.
    [36]Zhang CC, Shapiro DJ. Activation of the p38 mitogen-activated protein kinase pathway by estrogen or by 4-hydroxytamoxifen is coupled to estrogen receptor—induced apoptosis[J]. BiolChem,2000,275(1):479-486.
    [37]Endoh H, Sasaki H, Maruyama K, et al. Rapid activation of MAP kinase by estrogen in the bone cell line[J]. Biochem Biophys Res Commun,1997,235(1):99-102.
    [38]顾世红,陈建国.胰岛素信号转导、昆虫发育与老化[J].昆虫知识,2009;46(4):501-509.
    [39]Evanthia DK, Argyrakopoulou G, Economou F, et al. Defects in insulin signaling pathways in ovarian steroidogenesis and other tissues in polycystic ovary syndrome (PCOS)[J]. Journal of Steroid Biochemistry and Molecular Biology,2008,109:242-246.
    [40]Elad Ziv, Donglei Hu. Genetic variation in insulin/IGF-1 signaling pathways and longevity[J]. Aging Research Reviews,2011,10:201-204.
    [41]YUKO MORITA, SHIGERU NAKAMORI, HIROSHI TAKAGI. Effect of Proline and Arginine Metabolism on Freezing Stress of Saccharomyces cerevisiae[J]. Journal of bioscience and bioengineering,2002,94:390-394.
    [42]Kristensen VN, Kure EH, Erikstein B,et al.Genetic susceptibility and environmental estrogen-like compounds[J]. Mutat Res,2001,482:77-82.
    [43]白晓霞.性腺外雌激素合成与作用[J].国外医学妇产科学分册,2002,29(6)383-384.
    [44]Zhou BT, Conny A. Functional role of estrogen metabolism in target cells:review and perspectives [J]. Carcinogenesis,1998,19:1-27.
    [45]Murray GI, Taylor MC, McFadyen MC, et al. Tumour specific expression of cytochrome P450 CYP1B1[J]. Cancer Res,1997,57:3026-3031.
    [46]黄平.雌激素合成及代谢酶与乳腺癌易感性的研究[J].肿瘤学杂志,2005,10(4):267-270.
    [47]Muramatsu M, Inoue S. Estrogen receptors:how do they control reproductive and non-reproductive functions[J]? Biochem Biophys Res Commun,2000,; 270:1-10.
    [48]马兴丽.雌激素、雌激素受体与乳腺癌[J].中国医药指南,2010,8(29):56-57.
    [49]Thornton MJ. The biological actions of estrogens on skin[J]. Exp Dermatol,2002, 11:487-502.
    [50]Dunn L, Damesyn M, Moore A, et al.Does estrogen prevent skin aging? Results from the First National and Health Nutritional Examination Survey [J]. Arch Dermatol, 1997,133:339-42.
    [51]Pierard-Franchimont C, Letawe C, Goffin V, et al. Skin water-holding capacity and transdermal estrogen therapy for menopause:a pilot study[J]. Maturitas,1995, 22:151-154.
    [52]Sator PG, Schmidt JB, Sator MO, et al. The influence of hormone replacement therapy on skin aging:a pilot study[J]. Maturitas,2001,39:43-55.
    [53]Oikarinen Aaren. Systemic estrogens have no conclusive beneficial effect on human skin connective tissue[J]. Acta Obstet Gynecol Scand,2000,79:250-4.
    [54]Sauerbronn AV, Fonseca AM, Bagnoli VR, et al. The effects of systemic hormonal replacement therapy on the skin of postmenopausal women[J]. Int J Gynecol Obstet, 2000,68:35-41.
    [55]Castelo-Branco C, Figueras F, Marinez de Osaba MJ, et al. Facial wrinkling in postmenopausal women:effects of smoking status and hormone replacement therapy[J]. Maturitas,1998,29:75-86.
    [56]LuDan Qu, Masatoshi Abe, Yoko Yokoyama. Effects of 17 β-estradiol on matrix metalloproteinase-1 synthesis by human dermal fibroblasts[J]. Maturitas,2006, 54(1):39-46.
    [57]Makrantonaki E, Vogel K, Fimmel S, et al. Interplay of IGF-Ⅰ and 17b-estradiol at age-specific levels in human sebocytes and fibroblasts in vitro [J]. Experimental Gerontology,2008,43:939-946.
    [58]Kanda N, Watanabe S.17b-Estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression[J]. J Invest Dermatol,2004,123:319-328.
    [59]Naoko Kanda, Shinichi Watanabe.17b-Estradiol Stimulates the Growth of Human Keratinocytes by Inducing Cyclin D2 Expression[J].The Journal of Investigative Dermatology,2004,123:319-328.
    [60]Moeinpour F,Choudhry MA,de Figueiredo LF,et al. Estradiol's Salutary Effects on Keratinocytes Following Trauma-Hemorrhage Are Mediated by Estrogen Receptor (ER)-a and ER-p[J]. Mol Med,2008,14(11-12):689-96.
    [61]Tunzi M, Gray GR. Common skin conditions during pregnancy [J]. Am Fam Physician,2007,75:211-218.
    [62]Sungbin Im, Eun-So Lee, Wankee Kim, et al.Donor Specific Response of Estrogen and Progesterone on Cultured Human Melanocytes[J]. J Korean Med Sci,2002,17: 58-64.
    [63]Kousteni S, Bellido T, Plotkin LI, et al. Non genotropic, sex-nonspecific signaling through the estrogen or androgen receptors; dissociation from transcriptional activity [J]. Cell,2001,104:719-730.
    [64]Klotz DM, Hewitt SC, Ciana P, et al. Requirements of estrogen receptor alpha in insulin like growth factor-I(IGF-1) induced uterine responses and in vivo evidence for IGF-1/estrogen receptor cross talk[J]. J Biol Chem,2002,277:8531-8537.
    [65]Rivera-Woll LM, Davis SR. Postmenopausal hormone therapy:the pros and cons[J]. Int J Med,2004,34:109-114.