用户名: 密码: 验证码:
纳米无机掺杂改性聚偏氟乙烯超滤膜的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜分离技术是解决当代能源、资源和环境污染问题的重要高新技术以及可持续发展的技术基础。在我国,超滤膜的品种和质量跟国际先进水平相比还存在一定的差距,因此,关于超滤膜的研究有着重大的理论意义和实际运用价值。目前,超滤膜的研究方向主要是提高膜的抗污染性能以及降低操作成本。聚偏氟乙烯材料化学稳定性高,耐热性好,强度高,韧性好,是膜制备的优选材料。由于聚偏氟乙烯的强疏水性,在过滤操作时,聚偏氟乙烯超滤膜极易受蛋白质、油类等物质的污染。膜污染直接导致膜使用寿命缩短,操作成本增加,并极大的限制了超滤膜的应用范围。所以,聚偏氟乙烯超滤膜的改性就显得尤为重要。纳米材料被公认为是重点发展的新型材料之一。将纳米无机材料与聚偏氟乙烯相结合,不但能集中无机材料与有机材料的各自优点,弥补它们的缺陷,而且可以发展单一膜材料原先没有的综合性能,满足特定的需求。
     本课题选择了具有介孔结构的二氧化硅(SBA-15)、纳米粉体二氧化硅(SiO2)、NaY型纳米沸石分子筛、纳米碳酸钙(Nano-CaCO3)以及纳米氧化锌(Nano-ZnO)作为改性材料,通过相转化法分别制备了不同纳米材料的聚偏氟乙烯改性超滤膜。探讨了无机纳米材料的浓度对改性膜结构和性能的影响,并采用现代仪器分析方法和过滤操作对改性膜的表面、横截面形貌结构、热力稳定性、机械性能、亲水性、过滤性能以及抗污染性能进行了研究和分析。
     自制了新型无机纳米介孔二氧化硅材料SBA-15,通过相转化法制备了含低浓度SBA-15粒子(≤0.72 wt%)的PVDF共混改性膜。通过扫描电镜(SEM), X-射线能谱(EDX),拉伸力测试,热重分析(TGA),接触角测定,水通量和牛血清蛋白(BSA)截留率等方法表征了改性膜的性质。发现,低浓度SBA-15粒子的引入对膜的上表面,横截面形貌以及内部孔径没有明显影响。实验结果表明,添加低含量的SBA-15粒子能够有效地改善PVDF超滤膜的亲水性,提高膜的抗污染性、机械强度和热稳定性,而且在膜通量增大的同时,保持了BSA截留率在87%以上。
     比较了原始PVDF超滤膜和两种低浓度不同结构二氧化硅(N-SiO2和M-SiO2粒子)的共混聚偏氟乙烯改性膜。通过SEM和原子力显微镜(AFM)分别观察膜的横截面和表面形貌;通过对改性膜表面接触角的测定表征了多孔膜表面的亲水性能;通过测定水通量和BSA截留率比较了改性膜的过滤性能;根据BSA渗透通量得到了膜的平均孔径和孔隙率大小;通过TGA和弹性拉伸力测试,表征了改性膜的热稳定性和机械强度。结果表明,N-SiO2和M-SiO2浓度相同时,N-SiO2/PVDF (P-N)改性膜的平均孔径和孔隙率更大,水通量更高,但是BSA截留率有轻微降低;相对于P-N改性膜,M-SiO2/PVDF (P-M)改性膜表面的亲水性更高、表面粗糙度相对较低,抗污染性能较好,而且P-M改性膜的机械强度相对更高。此外,两种改性膜都具有典型的非对称膜形貌以及优良的热稳定性。
     通过相转化法制备了一种新型抗菌AgNaY/PVDF (P-AgNaY)共混改性超滤膜。AgNaY共混膜对大肠杆菌具有优异和长效的抗菌活性。结果表明,银离子含量越高抗菌活性越强。P-AgNaY-3的接触角降低到81.6°,膜表面的亲水性得到改善。与PVDF原始膜相比,P-AgNaY改性膜的过滤性能,热力稳定性和机械强度都有所改善,而且BSA截留率在92%以上。通过抑菌圈法测定了改性膜对大肠杆菌的抗菌活性和抗菌长效性。运用SEM,X-射线衍射法(XRD),拉伸力测试,TGA,接触角测试和膜通量的测试表征了P-AgNaY共混膜的各种性能。
     Nano-CaCO3作为掺杂材料,通过相转化法制备了不同浓度的Nano-CaCO3/PVDF共混超滤膜。讨论了改性膜的膜孔结构、机械性能、热力稳定性、亲水性以及过滤性能。随着Nano-CaCO3含量的增加,改性膜在保持膜的非对称结构的同时,它们的孔隙率和平均孔径逐渐增加,膜表面的接触角整体呈下降趋势,亲水性随之提高,同时增加了改性膜的水通量和抗污染性能,提高了改性膜的热力稳定性。由于Nano-CaCO3的强亲水性,使其在疏水性聚偏氟乙烯铸膜液中存在少量的团聚,从而降低了Nano-CaCO3粒子在膜中的分散程度,当Nano-CaCO3浓度为1.2 wt%时机械强度综合性能较好。
     自制了Nano-ZnO粒子,通过相转化法制备了不同浓度的Nano-ZnO/PVDF共混超滤膜。随着Nano-ZnO含量的增加,改性膜的接触角逐渐减小,膜表面的亲水性逐渐提高,孔隙率也有所增大,从而提高了PVDF改性膜的水通量,当Nano-ZnO含量为5 wt%时水通量达到最大值。考察了不同Nano-ZnO含量PVDF改性膜的机械强度,发现Nano-ZnO含量为5 wt%时,改性膜的机械性能较好。添加5 wt%的Nano-ZnO颗粒能够有效地调控膜孔结构,改变膜孔分布,改善膜的过滤性能,提高膜的水通量。Nano-ZnO还有效地提高了改性膜的热力稳定性能。
Membrane separation technology is an important high-tech to solve energy, resources, and environmental pollution problem of the time. It is a technology foundation of the sustainable development. The quality and category of domestic ultrafiltration (UF) membranes still need improving. Research in UF membrane technology has great significance of theoretical and practical values. The most concentrated research focused on UF membranes is to enhance anti-fouling property and to reduce costs. Poly (vinylidene fluoride) (PVDF) is a preferred material for membrane preparation. It has excellent chemical stability, thermal stability, strength, and toughness. However, these membranes are susceptible to be fouled by oils and proteins because of their high hydrophobicity, which limits their application in filtrating aqueous mixtures. Consequently, modification plays a very important role in PVDF membrane application. Nano-materials are recognized as one of the focus on the development of new materials. The combination of nano-inorganic materials and PVDF plays their respective advantages, makes up their deficiencies, exploits a comprehensive performance, and meets the specific needs.
     Nano-SiO2, nano-NaY zeolites, nano-CaCO3, and nano-ZnO modified PVDF UF membranes were prepared by phase inversion method in this study, respectively. Meanwhile, the effects of inorganic nano-particles on the morphology, thermal stability, mechanical property, hydrophilicity, membrane flux, and antifouling performance of the membranes were discussed as well.
     PVDF membranes with low contents of mesopours silica SBA-15 particles (≤0.72wt%, by weight of PVDF) were prepared by a phase inversion process. The thin membranes were then characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), tensile stress tests, thermogravimetric analysis (TGA), contact angle technique, water flux and bovine serum albumin (BSA) retention to investigate the influence on the final properties of the developed membrane. The resulting modified membrane exhibited no particular influence on the structures of the air surface, cross-section and inner pores. The experiment results confirmed that the addition of low contents of SBA-15 particles could effectively improve membrane hydrophilicity, antifouling performance, mechanical property and thermal stability, and increased membrane flux with the resistance of BSA solution above 87%.
     The comparison of the morphology and performance was carried out between virgin PVDF UF membrane and PVDF composite membranes with low content of two different SiO2 (N-SiO2 and M-SiO2 particles). Cross-sectional area and surface morphology of the membranes were observed using SEM and atomic force microscope (AFM). Surface hydrophilicity of the porous membranes was determined by the measurement of a contact angle. Performance tests were conducted on the composite membranes by water flux and BSA retention. Mean pore size and surface porosity were calculated based on the permeate flux. Thermal stability and mechanical stability were determined with TGA and tensile tests. The results indicated that the N-S1O2/PVDF (P-N) membranes possessed bigger average pore size and porosity, which led to higher water flux and a slight decline of BSA retention. And M-SiO2/PVDF (P-M) membranes had better mechanical stability and antifouling performance with enhanced membrane hydrophilicity and decreased membrane surface roughness. Both of the P-N and P-M membranes displayed typical asymmetric morphology and improved thermal stability.
     A novel antibacterial UF membrane obtained by blending PVDF with Ag+ exchanged NaY zeolite particles (AgNaY) was prepared using phase inversion methods. The AgNaY hybrid PVDF membranes exhibited excellent and long-lasting antibacterial activity against Escherichia coli (E. coli). Its antibacterial activity was improved with increased Ag+content. The hydrophilicity of P-AgNaY-3 was improved with a low contact angle of 81.6°. Compared with P-0, the permeate performance, thermal stability, and mechanical properties of P-AgNaY was improved with a steady BSA retention above 92%. Antibacterial activity of the membranes against E. coli was measured using the halo zone test. The characterization of AgNaY/PVDF hybrid membranes was investigated by scanning electron microscope, X-ray diffraction (XRD), tensile stress tests, TGA, contact angle tests, pure water flux, and permeation flux.
     PVDF membranes with different contents of nano-CaCO3 particles were prepared by a phase inversion process. The effect on morphology, mechanical property, thermal stability, hydrophilicity, and filtration performance of the modified membranes were discussed. With the increasing content of nano-CaCO3 particles, the porosity and average pore size of the modified membranes were increased, and the hydrophilicity was improved by decreased contact angle, which increased the membranes water flux and antifouling performance as well. Meanwhile, the modified membranes still maintained asymmetric structures. The attractive hydrophilicity caused partial aggregation of nano-CaCO3 in PVDF casting solution, which affect the dispersion of nano-CaCO3. And a best mechanical stability of modified membranes appeared at nano-CaCO3 concentration of 1.2 wt%.
     PVDF membranes with different contents of nano-ZnO particles were prepared by a phase inversion process. With the increasing content of nano-ZnO particles, the porosity of the modified membranes was increased; the hydrophilicity was improved by decreased contact angle, which led to the increase of the membranes water flux. The water flux and mechanical stability reached peak when nano-ZnO concentration was at 5 wt%. The results confirmed that the addition of 5wt% nano-ZnO could effectively dominate membrane pore structure and distribution, which improved membrane filtration performance and water flux. Nano-ZnO also improved membrane thermal stability effectively.
引文
[1]王湛,周翀膜.分离技术基础[M].北京:化学工业出版社,2006:1-4.
    [2]黄维菊,魏星.膜分离技术概论[M].国防工业出版社,2008:14-16.
    [3]J. Mueller, R.H. Davis. Protein fouling of surface-modified polymeric microfiltration Membranes [J]. J. Membr. Sci.,1996,116:47-60.
    [4](a)唐广军,孙本惠.聚偏氟乙烯膜的亲水性改性研究进展[J].化工进展,2004,23(5):480-485;(b)苗小郁,李建生,王连军,孙秀云.聚偏氟乙烯膜的亲水化改性研究进展[J].材料导报,2006,20:56-59.
    [5]A. Bottino, G. Capannelli. Poly (vinylidene fluoride) with improved functionalization for membrane production [J]. J. Membr. Sci.,2000,166:23-29.
    [6]H.F. Wang, L.J. Wang. Spectral analysis on the surface molecular structure of modified polyvinylidene fluoride membrane [J]. Appl. Surf. Sci.,2006,252: 8494-8498.
    [7]S. Akhtar, C. Hawes. Coatings reduce the fouling of microfiltration membranes [J]. J. Membr. Sci.,1995,107:209-218.
    [8]W. Jiang, G.S. Helm. Characterization of a non-fouling ultrafiltration membrane [J]. Desalination,2006,192:252-261.
    [9]S.P. Nunes, M.L. Sforqa. Dense hydrophilic composite membranes for ultrafiltration [J]. J. Membr. Sci.,1995,106:49-56.
    [10]G.N.B. Barona, B.J. Cha. Negatively charged poly(vinylidene fluoride) microfiltration membranes by sulfonation [J]. J. Membr. Sci.,2007,290:46-54.
    [11]N. Hilal, L. Al-Khatib. Atomic force microscopy study of membranes modified by surface grafting of cationic polyelectrolyte [J]. Desalination,2005,184: 45-55.
    [12]F. Liu, B.K. Zhu. Improving the hydrophilicity of poly(vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers [J]. Appl. Surf. Sci.,2006,253:2096-2101.
    [13]F. Liu, C.H. Du. Surface immobilization of polymer brushes onto porous poly(vinylidene fluoride) membrane by electron beam to improve the hydrophilicity and fouling resistance [J]. Polymer,2007,48:2910-2918.
    [14]G.Q. Zhai, E.T. Kang. Poly (2-vinylpyridine) and poly (4-vinylpyridine)-graft-poly (vinylidene fluoride) copolymers and their pH-sensitive microfiltration membranes [J]. J. Membr. Sci.,2003,217:243-259.
    [15]P. Wang, K.L. Tan. Plasma-induced immobilization of poly(ethylene glycol) onto poly(vinylidene fluoride) microporous membrane [J]. J. Membr. Sci.,2002, 195:103-114.
    [16]R. Xie, Y. Li. Preparation of thermo-responsive gating membranes with controllable response temperature [J]. J. Membr. Sci.,2007,289:76-85.
    [17]C. Jolivalt, S. Brenon. Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane:characterization of the grafted support and application in removing a phenylurea pesticide in wastewater [J]. J. Membr. Sci.,2000,180:103-113.
    [18]Y. Liu, J.Y. Lee. Synthesis characterization and electrochemical transport properties of the poly(ethyleneglycol)-grafted poly(vinylidene fluoride) nanoporous membranes [J]. React. Funct. Polym.,2001,47:201-213.
    [19]A. Asatekin, A. Menniti. Antifouling nanofiltration membranes for membrane bioreactors from self-assembling graft copolymers [J]. J. Membr. Sci.,2006,285: 81-89.
    [20]M. Momtaz, J.L. Dewez. Chemical reactivity assay and surface characterization of a poly(vinylidene fluoride) microfiltration membrane [J]. J. Membr. Sci.,2005, 250:29-37.
    [21]N. Singh, S.M. Husson. Surface modification of microporous PVDF membranes by ATRP [J]. J. Membr. Sci.,2005,262:81-90.
    [22]武利顺,孙俊芬.聚偏氟乙烯膜研究进展[J].膜科学与技术,2004,24(5):63.
    [23]W.Z. Lang, Z.L. Xu. Preparation and characterization of PVDF-PFSA blend hollow fiber UF membrane [J]. J. Membr. Sci.,2007,288:123-131.
    [24]N.A. Ochoa, M. Masuelli. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes [J]. J. Membr. Sci.,2003,226: 203-211.
    [25]D.J. Lina, C.L. Changa, C.K. Lee, L.P. Cheng. Preparation and characterization of microporous PVDF/PMMA composite membranes by phase inversion in water/DMSO solutions [J]. Eur. Polym. J.,2006,42:2407-2418.
    [26]M. Ulaganathan, S. Rajendran. Effect of Different Salts on PVAc/PVDF-co-HFP Based Polymer Blend Electrolytes [J]. J. Appl. Polym. Sci.,2010,118:646-651.
    [27]C.X. Mu, Y.L. Su, M.P. Sun, W.J. Chen, Z.Y. Jiang. Remarkable improvement of the performance of poly(vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate [J]. J. Membr. Sci.,2010,350:293-300.
    [28]J.F. Hester, A.M. Mayes. Design and performance of foul-resistant poly(vinylidene fluoride) membranes prepared in a single-step by surface segregation [J]. J. Membr. Sci.,2002,202:119-135.
    [29]S.M. Wang, Z. Wang. Experimental study of the control of pore sizes of porous membranes applying chemicals methods [J]. Desalination,2005,177:7-13.
    [30]L.S. Wu, J.F. Sun. Poly(vinylidene fluoride)/polyethersulfone blend membranes: Effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology [J]. J. Membr. Sci.,2006,285:290-298.
    [31]Y.H. Zhao, B.K. Zhu. Porous membranes modified by hyperbranched polymers I. Preparation and characterization of PVDF membrane using hyperbranched polyglycerol as additive [J]. J. Membr. Sci.,2007,290:222-229.
    [32]M.C. Yang, T.Y. Liu. The permeation performance of polyacrylonitrile/poly vinylidine fluoride blend membranes [J]. J. Membr. Sci.,2003,226:119-130.
    [33]J.F. Hester, S.C. Olugebefola. Preparation of pH-responsive polymer membranes by self-organization [J]. J. Membr. Sci.,2002,208:375-388.
    [34]D.J. Lin, H.H. Chang. Formation of porous poly(vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system [J]. Eur. Polym. J.,2006,42:1581-1594.
    [35]L. Yan, Y.S. Li. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance [J]. J. Membr. Sci.,2006,276:162-167.
    [36]L. Yan, Y.S. Li. Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research [J]. Polymer,2005,46:7701-7706.
    [37]X.C. Cao, J. Ma. Effect of TiO2 nanoparticle size on the performance of PVDF membrane [J]. Appl. Surf. Sci.,2006,253:2003-2010.
    [38]S.S. Chin, K. Chiang. The stability of polymeric membranes in a TiO2 photocatalysis process [J]. J. Membr. Sci.,2006,275:202-211.
    [39]L. Ying, G.Q. Zhai. pH effect of coagulation bath on the characteristics of poly(acrylic acid)-grafted and poly(4-vinylpyridine)-grafted poly(vinylidene fluoride) microfiltration membranes [J]. J. Colloid Interface Sci.,2003,265: 396-403.
    [40]L. Ying, E.T. Kang. Characterization of membranes prepared from blends of poly (acrylic acid)-graft-poly(vinylidene fluoride) with poly(N-isopropylacrylamide) and their temperatureand pH-sensitive microfiltration [J]. J. Membr. Sci.,2003, 224:93-106.
    [41]L. Ying, E.T. Kang. Covalent immobilization of glucose oxidase on microporous membranes prepared from poly (vinylidene fluoride) with grafted poly (acrylic acid) side chains [J]. J. Membr. Sci.,2002,208:361-374.
    [42]L. Ying, E.T. Kang. Drug permeation through temperature-sensitive membranes prepared from poly (vinylidene fluoride) with grafted poly (N-isopropylacrylamide) chains [J]. J. Membr. Sci.,2004,243:253-262.
    [43]Z.A. Chen, M.C. Deng, Y. Chen, G.H. He, M. Wu, J.D. Wang. Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications. J. Membr. Sci.,2004,235:73-86.
    [44]L.Y. Yu, Z.L. Xu, H.M. Shen, H. Yang. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method [J]. J. Membr. Sci.,2009,337:257-265.
    [45]L. Ye, Z. Fan, J. Zhou. Membr. Sci., Technol.2 (1981) 24 (in Chinese).
    [46]S.P. Nunes, K.V. Peinemann. Ultrafiltration membranes from PVDF/PMMA blends [J]. J. Membr. Sci.,1992,73:25-35.
    [47]M. Khayet, C.Y. Feng, K.C. Khulbe, T. Matsuura. Preparation and characterization of polyvinylidene fluoride hollow fiber membranes for ultrafiltration [J]. Polymer,2002,43:3879-3890.
    [48]M. Gryta, K. Karakulski, A.W. Morawski. Purification of oily wastewater by hybrid UF/MD [J]. Water Res.,2001,35:3665-3669.
    [49]M. Zhang, A.Q. Zhang, B.K. Zhu. Polymorphism in porous poly(vinylidene fluoride) membranes formed via immersion precipitation process [J]. J. Membr. Sci.,2008,319:169-175.
    [50]Z.W. Wang, Z.C. Wu, J. Hua. Application of flat-sheet membrane to thickening and digestion of waste activated sludge (WAS) [J]. J. Hazard. Mater.,2008,154: 535-542.
    [51]Y.W. Chen, Q. Deng, J.C. Mao. Controlled grafting from poly(vinylidene fluoride) microfiltration membranes via reverse atom transfer radical polymerization and antifouling properties [J]. Polymer,2007,48:7604-7613.
    [52]C.L. Chang, M.S. Chang. Preparation of multi-layer silicone/PVDF composite membranes for pervaporation of ethanol aqueous solutions [J]. J. Membr. Sci., 2004,238:117-122.
    [53]N. Ochoa, C. Pagliero, J. Marchese. Ultrafiltration of vegetable oils-Degumming by polymeric membranes [J]. Sep. Purif. Technol.,2001,22:417-422.
    [54]B. Hu, K. Scott. Influence of membrane material and corrugation and process conditions on emulsion microfiltration [J]. J. Membr. Sci.,2007,294:30-39.
    [55]Y.H. Zhao, B.K. Zhu, L. Kong. Improving hydrophilicity and protein resistance of poly(vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer [J]. Langmuir,2007,23:5779-5786.
    [56]J.X. Yang, W.X. Shi, S.L. Yu, Y. Lu. Influence of DOC on fouling of a PVDF ultrafiltration membrane modified by nano-sized alumina [J]. Desalination,2009, 239:29-37.
    [57]A. Bottino, G. Capannelli, V. D'Asti. Preparation and properties of novel organic-inorganic porous membranes [J],. Sep. Purif. Technol.,2001,22-23: 269-275.
    [58]X.J. Liu, Y.L. Peng, S.L. Ji. A new method to prepare organic-inorganic hybrid membranes [J]. Desalination,2008,221:376-382.
    [59]A. Bottino, G Capannelli, A. Comite. Preparation and characterization of novel porous PVDF-ZrO2 composite membranes [J]. Desalination,2002,146:35-40.
    [60]X.F. Li, C.F. Xiao. Structure and properties of composite polyurethane hollow fiber membranes [J]. Chin. J. Polym. Sci.,2005,23:203-210.
    [61]D.Y. Zhao, J.Y. Sun, Q.Z. Li, G.D. Stucky. Morphological control of highly ordered mesoporous silica SBA-15 [J]. Chem. Mater.,2000,12:275-279.
    [62]X.S. Zhao, G.Q. Lu, A.K. Whittaker, GJ. Millar, H.Y. Zhu. Comprehensive study of surface chemistry of MCM-41 using 29Si CP/MAS NMR, FTIR, Pyridine-TPD, and TGA [J]. J. Phys. Chem. B.,1997,101:6525-6531.
    [63]T. Ogoshi, Y. Chujo. Synthesis of poly (vinylidene fluoride)(PVdF)/silica hybrids having interpenetrating polymer network structure by using crystallization between PVdF chains [J]. J. Polym. Sci. A:Polym. Chem.,2005,43:3543-3550.
    [64]G. Arthanareeswaran, T. K. Sriyamuna Devi, M. Raajenthiren. Effect of silica particles on cellulose acetate blend ultrafiltration membranes:Part I [J]. Sep. Purif. Technol.,2008,64:38-47.
    [65]R. Ghosh. Study of membrane fouling by BSA using pulsed injection technique [J]. J. Membr. Sci.,2002,195:115-123.
    [66]D.M. Kanani, R. Ghosh. A constant flux based mathematical model for predicting permeate flux decline in constant pressure protein ultrafiltration [J]. J. Membr. Sci.,2007,290:207-215.
    [67]Z.Q. Huang, K. Chen, S.N. Li, X.T. Yin, Z. Zhang, H.T. Xu. Effect of ferrosoferric oxide content on the performances of polysulfone-ferrosoferric oxide ultrafiltration membranes [J]. J. Membr. Sci.2008,315:164-171.
    [68]G.G. Kumar, P. Kim, A.R. Kim, K.S. Nahm, R.N. Elizabeth. Structural, thermal and ion transport studies of different particle size nanocomposite fillers incorporated PVdF-HFP hybrid membranes [J]. Mater. Chem. Phys.,2009,115: 40-46.
    [69]S.L. Yu, X.T. Zuo, R.L. Bao, X. Xu, J. Wang, J. Xu. Effect of SiO2 nanoparticle addition on the characteristics of a new organic-inorganic hybrid membrane [J]. Polymer,2009,50:553-559.
    [70]K. Jian, P.N. Pintauro, R. Ponangi. Separation of dilute organic/water mixtures with asymmetric poly(vinylidene fluoride) nTembranes [J]. J. Membr. Sci.,1996, 117:117-133.
    [71]A. Salahi, M. Abbasi, T. Mohammadi. Permeate flux decline during UF of oily wastewater:Experimental and modeling [J]. Desalination,2010,251:153-160.
    [72]S. Kosvintsev. I. Cumming, R. Holdich, Sieve mechanism of micro filtration separation [J]. Colloid Surf. A-Physicochem. Eng. Asp.,2004,230:167-182.
    [73]Y. Chang, Y.J. Shih, R.C. Ruaan. Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility [J]. J. Membr. Sci., 2008,309:165-174.
    [74]S. Rajabzadeh, T. Maruyama, Y. Ohmukai, T. Sotani, H. Matsuyama. Preparation of PVDF/PMMA blend hollow fiber membrane via thermally induced phase separation (TIPS) method [J]. Sep. Purif. Technol.,2009,66:76-83.
    [75]G.L. Yuan, Z.L. Xu, Y.M. Wei. Characterization of PVDF-PFSA hollow fiber UF blend membrane with low-molecular weight cut-off [J]. Sep. Purif. Technol., 2009,69:141-148.
    [76]Z. Huang, H.M. Guan, W.L. Tan, X.Y. Qiao, S. Kulprathipanja. Pervaporation study of aqueous ethanol solution through zeolite-incorporated multilayer poly(viny alcohol) membranes:Effect of zeolites [J]. J. Membr. Sci.,2006,276: 260-271.
    [77]Q. Liu, R.D. Noble, J.L. Falconer, H.H. Funke. Organics/water separation by pervaporation with zeolite membrane [J]. J. Membr. Sci.,1996,117:163-174.
    [78]N. Hilal, V. Kochkodan, L. Al-Khatib, T. Levadna. Surface modified polymeric membranes to reduce (bio)fouling:a microbiological study using E. coli [J]. Desalination,2004,167:293-300.
    [79]J. An, H. Zhang, J.T. Zhang, Y.H. Zhao, X.Y. Yuan. Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles [J]. Colloid Polym. Sci.,2009,287:1425-1434.
    [80]J. Lu, X.D. Wang, C.B. Xiao. Preparation and characterization of konjac glucomannan/poly (diallydimethylammonium chloride) antibacterial blend films [J]. Carbohydr. Polym.,2008,73:427-437.
    [81]Y. Liu, X.L. Wang, F. Yang, X.R. Yang. Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films [J]. Microporous Mesoporous Mat.,2008,114:431-439.
    [82]M.T. Yahya, T.M. Straub, C.P. Gerba. Inactivation of coliphage MS-2 and poliovirus by chlorine [J]. Can. J. Microbiol.,1992,38:430-435.
    [83]J.V. Rogers, C.V. Parkinson, Y.W. Choi, J.L. Speshock, S.M. Hussain. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation [J]. Nanoscale Res. Lett.,2008,3:129-133.
    [84]D.B. Pinto, S. Shukla, N. Perkas, A. Gedanken, R. Sand. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate [J]. Bioconjugate Chem.,2009,20:1497-1502.
    [85]P.S. Vijayakumar, B.L.V. Prasad. Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents [J]. Langmuir,2009,25:11741-11747.
    [86]Y.G. Wu, W.J. Jia, Q. An, Y.F. Liu, J.C. Chen, G.T. Li. Multiaction antibacterial nanofibrous membranes fabricated by electrospinning:an excellent system for antibacterial applications [J]. Nanotechnology,2009,20:245101-245108.
    [87]S.P. Chen, G.Z. Wu, H.Y. Zeng. Preparation of high antimicrobial activity thiourea chitosan-Ag+complex [J]. Carbohydr. Polym.,2005,60:33-38.
    [88]S. Zhang, R. Fu, D. Wu, W. Xu, Q. Ye, Z. Chen. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels [J]. Carbon,2004,42: 3209-3216.
    [89]B.S. Xu, W.S. Hou, S.H. Wang, L.Q. Wei, H.S. Jia, X.G. Liu. Study on the heat resistant property of Ag/4A antibacterial agent [J]. J. Biomed. Mater. Res. B., 2008,84B:394-399.
    [90]Y.L. Ma, T. Zhou, C.S. Zhao. Preparation of chitosan-nylon-6 blended membranes containing silver ions as antibacterial materials [J]. Carbohydr. Res., 2008,343:230-237.
    [91]Z. Huang, P.C. Maness, D.M. Blake, E.J. Wolfrum, S.L. Smolinski, W.A. Jacoby. Bactericidal mode of titanium dioxide photocatalysis [J]. J. Photochem. Photobiol. A.,2000,130:,163-170.
    [92]Y. Zhang, S.L. Zhong, M.S. Zhang, Y.C. Lin. Antibacterial activity of silver-loaded zeolite A prepared by a fast microwave-loading method [J]. J. Mater. Sci.,2009,44:457-462.
    [93]A. Top, S. Ulku. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity [J]. Appl. Clay Sci.,2004,27:13-19.
    [94]Y.S. Jiang, W.Q. Jin, J. Zhang, S.S. Fang. Composite of TiO2/zeolite structure and photocatalytic reactivity [J]. J. Inorg. Mater.,2002,17:1301-1305.
    [95]I.C. Ostroski, M.A.S.D. Barros, E.A. Silva, J.H. Dantas, P.A. Arroyo, O.C.M. Lima. A comparative study for the ion exchange of Fe (Ⅲ) and Zn (Ⅱ) on zeolite NaY[J]. J. Hazard. Mater.,2009,161:1404-1412.
    [96]T. Kato, A. Sugawara, N. Hosoda. Calcium carbonate-organic hybrid materials [J]. Advance materials,2002,14(12):869-877.
    [97]S. Chinnakonda, Gopinath, G. Sooryakant. Photoemission studies of polymorphic CaCO3 materials [J]. Mater. Res. Bull.,2002,37:1323-1332.
    [98]杜奎义,曹天志,李文化.纳米材料在聚氨酯防水涂料中的应用研究[J].中国建筑防水,2003,20:8-9.
    [99]H. Zhang, J.F. Chen, H.K. Zhou. Preparation of nano-sized precipitated calcium carbonate for PVC plastisol rheology modification [J]. J. Mater. Sci. Lett.,2002, 21:1305-1306.
    [100]孟翠省.纳米技术在高分子材料改性中的应用[J].化工新型材料,2001,29:3-6.
    [101]周公度.化学辞典[M].北京:化学工业出版社,2006:671.
    [102]Y.W. Wang, Q.S. Hu, L.C. Li, X. Wang, A.M. Tian. Theoretical study of the reaction mechanism of hydroxyl ZnO catalyzing methanol decomposition [J]. Acta Chim. Sin.,2007,65:1951-1955.
    [103]王成艳.纳米氧化锌及复合粉体的制备和光催化性能研究[D].长春:东北大学,2005.
    [104]马萨勒科贝阿新,威廉卡尔里斯,刘树葆.二氧化钛和氧化锌的光催化活性[J].日用化学品科学,1999,105:15-16.
    [105]R. Brayner, R. Ferrari-Iliou. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium [J]. Nano Letter, 2006,6:866-870.
    [106]张江娜.纳米氧化锌的制备及在水处理方面的应用[J].广州化工,2009,(9):190-191.
    [107]余罡.纳米氧化锌的制备与抗菌性能研究[D].武汉:华中科技大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700