随机与动态物流网络优化问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物流网络优化中的车辆路径问题和设施选址问题是物流系统研究中的重要组成部分,其无论是在国民经济生活中还是在军事战争领域里都有着重要的理论意义和实用价值。以往的网络优化问题的研究主要是集中于静态信息以及确定性领域,即使考虑到不确定因素,也是一类比较简单的问题。而在实际中,涉及大量的不确定信息以及复杂的约束条件,传统的模型难以描述随机条件下或动态条件下的物流网络优化问题;而且,随着网络规模的扩大,使得物流网络优化问题求解变得越来越困难。因此,有必要进一步研究在随机条件下以及动态条件下的物流网络优化问题,并为问题求解构造出更有效、更符合实际的模型与算法。本文针对相关的随机条件下以及动态条件下的物流网络优化问题,给出了相应的模型及算法,并进行了应用计算。主要的研究内容及创新点如下:
     随机需求下带时间窗的物流网络车辆路径优化研究。考虑用户需求随机以及对客户服务有时间窗口限制的情况下,提出了一种随机需求下带时间窗物流网络车辆路径优化问题研究。分析了问题的特性,给出了预优化求解策略,建立随机补偿模型,并对问题求解中的期望额外总费用计算进行了详细的讨论。针对研究问题,设计了一种自适应大邻域启发式搜索求解算法。通过对构造的56组示例的计算,并与另一种“确定性求解策略”进行的对比,验证了构建模型及设计算法的有效性,同时也对子算法性能进行了评估。
     随机需求下可拆分服务的物流网络车辆路径优化研究。针对随机需求下,客户需求可拆分服务的情况,提出了一种随机需求下可拆分服务物流网络车辆路径优化问题研究,给出了一种需求可拆分服务的配对车辆回归求解策略,建立了数学模型。在对问题求解中的期望回归费用计算时,分别对配对车辆的不协作与协作的情况进行了讨论。针对问题求解,设计了一种大邻域启发式搜索算法。最后,通过对设计的应用示例的计算,以及与需求不允许拆分服务情况下的结果对比表明,当客户平均需求量大于一半车辆容量时,允许需求可拆分服务的随机需求下的车辆路径优化结果明显优于需求不可拆分服务的随机需求下的车辆路径优化结果。
     随机服务时间下的物流网络车辆路径优化研究。考虑确定的车辆行驶时间、随机的车辆服务时间以及拥有最大工作时间限制的情况下,提出了一种随机服务时间下物流网络车辆路径优化问题研究。针对问题特性,建立了相关数学模型,讨论了期望费用的计算。设计了一种G型变邻域启发式搜索算法以求解问题。通过应用示例计算,将设计的算法与给出的另外两种求解算法所获得的结果进行了对比,同时测试了不同参数设置下的对应用示例计算结果的影响,获得了比较好的效果。
     保障网络动态选址与分配研究。针对军事背景下,被保障单元需求呈现多周期动态变化的情况,研究了保障网络中动态选址与分配优化问题。建立了数学模型,并设计了一种混合式进化算法。通过对设计的一组应用示例的计算,对模型及算法进行了有效验证。
The researches on the vehicle routing problems and the facility location problems are very important parts of the logistics networks optimization. These two classes of problems are significant on the economic area and military area. In the classical logistics networks optimization, the researchers mainly focused on the deterministic problems. The problems are very simple, even though they considered the uncertainty elements. In the real life, there exist much uncertainty information and many complex constraints. Traditional models and algorithms show great limitations in solving the stochastic problems and dynamic problems. Therefore, it is necessary to do further research jobs to construct more effective models and algorithms for the stochastic logistics networks optimization and the dynamic logistics networks optimization. In this thesis, a series of stochastic vehicle routing problems and a dynamic location allocation problem are studied thoroughly. The main contributions of this thesis are outlined as follows:
     Firstly, the research of the vehicle routing problem with stochastic demands and time windows (VRPSDTW) is provided. In this problem, the demands of customers are stochastic and there exists a time window for each customer. A priori optimization strategy is provided for the problem, and a stochastic programming with recourse model is built. The computation of the expected cost of recourse is complex and is discussed in detail. An adpative large neigborhood search heuristic is developed for the solving of problem. The heuristic is tested on the modified Solomon instances. The computational results are compared with the results which are obtained by an alternative solving strategy. The effectiveness of the sub-heuristics is also evaluated.
     Secondly, the research of the vehicle routing problem with stochastic demands and split deliveries (VRPSDSD) is provided. A paired-vehicles recourse with split delivery strategy is given for the solving problem. The mathematical model is then built. The cooperations between the two paired vehicles and the non-cooperative operations are respectively considered when the expected cost of recourse is computed. A large neigborhood search heuristic is devised, and the heuristic is tested on the modified Solomon instances. The results show that when the average customer demand is larger than the half capacity of vehicle, the savings with the paired-vehicles recourse with split delivery strategy are obvious.
     Thirdly, the research of vehicle routing problem with stochastic service times (VRPSTT) is provided. In this problem, the customer demand and the travel time are deterministic, but the service times on the customers are stochastic. There also exists a limit on the route duration. The mathematical model is constructed and the expected cost of solution is discussed. The general variable neighborhood search heuristic is provided for the solving. In the experiments, the general variable neighborhood search heuristic is compared with two other heuristics. Also the computations are tested with different parameters. The computational results verify the performance of model and algorithm.
     Fourthly, a dynamic location allocation problem is studied. With a military background, the supported unit is associated with the multiple periodical demand. The mathematical model is constructed and a hybrid evolutionary algorithm is developed for the problem. The model and algorithm are verified by the experimental results.
引文
[1]赵秋红,汪寿阳,黎建强.物流管理中的优化方法与应用分析[M].北京:科学出版社, 2006.
    [2]吴清一.物流基础[M].北京:清华大学出版社, 2000.
    [3]菊池康也著,丁立言译.物流管理[M].北京:清华大学出版社, 1999.
    [4]丁立言,张铎.物流系统工程[M].北京:清华大学出版社, 2000.
    [5] King G.F., C.F. Mast, Excess Travel: Causes, Extent and Consequences [J]. Transportation Research Record. 1997, 1111: 126-134.
    [6] Larsen J., Parallelization of the Vehicle Routing Problem with Time Windows [D], Ph.D thesis. Institute of Mathematical Modeling, Technical University of Denmark, Lyngby, Denmark. 1999.
    [7] Backer B.De, V.Fumon, P. Prosser, P. Kilby, P. Shaw. Local Search in Constraint Programming: Application to the Vehicle Routing Problem[C]. in Proceedings of CP-97 Workshop on Industrial Constraint-Directed Scheduling, Schloss Hagenberg, Austria. 1997.
    [8] Golden B.L., E.A. Wasii, Computerized Vehicle Routing In The Soft Drink Industry[J]. Operations Research. 1987, 35: 6-17.
    [9]中国物流与采购联合会课题组.中国物流2005年上半年运行分析及下半年走势[J].运输经理世界. 2005, 10: 70-72.
    [10]吴秀类.高技术战争与国防现代化.北京:国防大学出版社,2001.
    [11]沈培新.海湾战争中美军后勤自动化保障综述_军事系统工程,1992,2
    [12]徐克洲王凤才张冬伊拉克战争后勤保障情况及特点.外军后勤信息,2003,3:3-8.
    [13]王丰,姜大立,彭亮.军事物流学[M].中国物资出版社, 2003.
    [14] Darilek R., Measures of Effectiveness for the Information Age Army [Z]. RANDMR-1155-1, 2000.
    [15] Dantzig G B, Ramser J H.The Truck Dispatching Problem[J].Management Science, 1959, 6:80-9l.
    [16] Desroehers M, Desrosiers J, Solomon M M.A new optimization algorithm for the vehiele routing problem with time windows [J].Operations Researeh, 1992, 40:342—354.
    [17] Fisher M L. Optimal solution of vehicle routing problems using minimum k-trees [J]. Operation Research, 1994, 42(4):626-642.
    [18] Solomon M M. On the worst-case performance of some heuristics for the vehicle routing and scheduling problem with time window constraints[J]. Networks, 1986,16(2): 161-174.
    [19] Solomon M M. Algorithms for the vehicle routing and scheduling problems with time window constraints [J]. Operations Research, 1987, 35(2):254-265.
    [20] Kontoravdis G, Bard J F. A GRASP for the vehicle routing problem with time windows [J]. ORSA Journal on Computing, 1995, 7(1):10-23.
    [21]张丽艳,庞小红,夏蔚军等.带时间窗车辆路径问题的混合粒子群算法[J].上海交通大学学报, 2006, 40(11):1890-1894.
    [22]李宁,邹彤,孙德宝.带时间窗车辆路径问题的粒子群算法[J].系统工程理论与实践, 2004, 4:130-135.
    [23] Ropke S, Pisinger D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[J]. Transportation Science, 2006, 40(4):455-472.
    [24] Tan K C, Lee L H, Zhu Q L, et al. Heuristic methods for vehicle routing problem with time windows[J]. Artificial Intelligence in Engineering, 2001, 15:281-295.
    [25] Russell R A, Chiang W C. Scatter search for the vehiele routing problem with time windows[J].European Journal of Operational Research, 2006, 169:606-622.
    [26] Favaretto D, Moretti E, Pellegrini P. Ant colony system for a VRP with multiple time windows and multiple visits[J]. Journal of Interdisciplinary Mathematics, 2007, 10(2): 263-284.
    [27] Braysy O, Gendreau M.Vehicle routing problem with time windows, Part I: Search Algorithms[J]. Transportation Science, 2005, 39(1):104-118.
    [28] Braysy O, Gendreau M.Vehicle routing problem with time windows,Part II: Metaheuristics[J]. Transportation Science, 2005, 39(1):119-139.
    [29] Dror M, Trudeau P. Savings by split delivery routing[J]. Transportation Science,1989, 23(2): 141-145.
    [30] Dror M, Trudeau P. Split delivery routing[J]. Naval Research Logistics, 1990, 37(3):383-402.
    [31] Dror M, Laporte G, Trudeau P. Vehicle routing with split deliveries[J]. Discrete Applied Mathematics, 1994, 50(3):239-254.
    [32] Belenguer J M, Martinez M C, Mota E. A lower bound for the split delivery vehicle routing problem[J]. Operations Research, 2000, 48(5):801-810.
    [33] Sierksma G, Tijssen G A. Routing helicopters for crew exchanges on off-shore locations[J]. Annals of Operations Research. 1998, 76:261-286.
    [34] Mullaseril P, Dror M, Leung J. Split-delivery routing heuristics in livestock feed distribution[J]. Journal of the Operational Research Society.1997, 2:107-116.
    [35] Archetti C, Savelsbergh M W P, Speranza M G. Worst-case analysis for split delivery vehicle routing problems[J]. Transportation Science, 2006, 40(2):226-234.
    [36] Archetti C, Savelsbergh M W P, Speranza M G. To split or not to split: That is the question. Transportation Research Part E: Logistics and Transportation Review, 2008, 44(1):114-123.
    [37] Frizzell P, Giffin J. The bounded split delivery vehicle routing problem with grid network distances[J]. Asia Pacific Journal of Operational Research, 1992, 9:101-116.
    [38] Frizzell P, Giffin J. The split delivery vehicle scheduling problem with time windows and grid network distances[J].Computers & Operational Research, 1995, 22:655-667.
    [39] Ho S C, Haugland D. A tabu search heuristic for the vehicle routing problem with time windows and split deliveries[J]. Computers & Operations Research, 2004, 31(12):1947-1964.
    [40] Lee C-G, Marina A.A shortest path approach to the multiple-vehicle routing problem with split pick-ups[J]. Transportation Research, 2006, 40:265-284.
    [41] Nowak M, Ergun O, White C C. Pickup and delivery with split loads[J]. Transportation Science, 2008, 42(1):32-43.
    [42]谭家美,徐瑞华.客户需求可分的车辆路径问题求解[J].系统管理学报, 2008, 17(1):43-46.
    [43]侯立文,谭家美,赵元.求解带时间窗的客户需求可分条件下的车辆路径问题[J].中国管理科学, 2007, 15(6):46-51.
    [44]孟凡超,陆志强,孙小明.需求可拆分车辆路径问题的禁忌搜索算法[J].计算机辅助工程, 2010, 19(1):78-83.
    [45]谢毅.需求可拆分的物流车辆路线问题研究[D].同济大学, 2006.
    [46] Gendreau M, Laporte G, Seguin R. Stochastic vehicle routing[J]. European Journal of Operational Research, 1996, 88(1):3-22.
    [47] Barnhart C, Laporte G. Transportation[M]. Amsterdam: Elsevier, 2007:367-428.
    [48] Tillman F A. The multiple terminal delivery problem with probabilistic demands[J]. Transportation Science, 1969, 3(3):192-204.
    [49] Jaillet P. Probabilistic travelling salesman problem[J].In: Andreatta G, Mason F, Serafini P (eds). Stochastic in combinatorial Optimization, World Scientific, New Jersey, 1987.
    [50] Jaillet P, Odoni A R. The probabilistio vehicle routing problem[J]. In: Golden B L, Assad A A (eds), Vehicle routing: methods and studies. Amsterdam: North-Holland, 1988.
    [51] Bertsimas D J. Probabilistic combinatorial optimization problems[D]. Department of Mathematics, Massachusetts Institute of Technology, 1988.
    [52] Water C D J. Vehicle-scheduling problems with uncertainty and omitted customers[J]. Operational Research Society, 1989, 40(2):1099-1108.
    [53] Stewart W R, Golden B L. Stochastic vehicle routing: A comprehensive approach[J]. European Journal of Operational Research, 1983, 14:371-385.
    [54] Laporte G, Louveaux F V, Mercure H. Models and exact sulutions for a class of stochastic location-routing problem[J]. European Journal of Operational Research, 1989, 39:71-78.
    [55] Laporte G, Louveaux F V, Van hamme L. An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands[J]. Operations Research, 2002, 50(3): 415-423.
    [56] Secomandi N. Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands[J]. Computers & Operations Research, 2000, 27(11-12):1201-1225.
    [57] Bertsimas D J. A vehicle routing problem with stochastic demand. Operations Research, 1992, 40(3):574-585.
    [58] Bertsimas D J, Jaillet P, Odoni A R. A priori optimization. Operations Research, 1990, 38(6):1019-1033.
    [59] Secomandi N, Margot F. Reoptimization approaches for the vehicle-routing problem with stochastic demands[J]. Operations Research, 2009, 57(1):214-230.
    [60] Tan K C, Cheong C Y, Goh C K. Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation[J]. European Journal of Operational Research, 2007, 177(2):813-839.
    [61] Mendoza J E, Castanier B, Gueret C, Medaglia A L, Velasco N. A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands[J]. Computers & Operations Research, 2010, 37(11):1886-1898.
    [62] Gendreau M, Laporte G, Seguin R. An exact algorithm for the vehicle routing problem with stochastic demands and customers[J]. Transportation Science, 1995, 29(2):143-155.
    [63] Gendreau M, Laporte G, Seguin R. A tabu search heuristic for the vehicle routing problem with stochastic demands and customers[J]. Operations Research, 1996, 44(3):469-477.
    [64] Laporte G, Louveaux F V, Mercure H. The vehicle routing problem with stochastic travel times[J]. Transportation Science, 1992, 26: 161-170.
    [65] Lambert V, Laporte G, Louveaux F V. Designing collection routes through bank branches[J]. Computers & Operations Research, 1993, 20:783-791.
    [66] Kenyon A S, Morton D P. Stochastic vehicle routing with random travel times[J]. Transportation Science, 2003, 37:69-82.
    [67]王芳,丁海利,高成修.改进的粒子群优化算法在随机需求车辆路径问题中的应用[J].武汉大学学报(理学版), 2007, 53(1):41-44.
    [68]娄山佐,史忠科.基于交叉熵法解决随机用户和需求车辆路径问题[J].控制与决策, 2007, 22(1):7-20.
    [69]陆琳,蔡绍洪.一类随机顾客车辆路径问题及其算法[J].南京航空航天大学学报, 2010, 42(4):521-525.
    [70]郭强,谢秉磊.随机旅行时间车辆路径问题的模型及其算法[J].系统工程学报, 2003, 18(3):244-247.
    [71]张杨,黄庆,卜祥智.随机旅行时间局内车辆路径问题的模型及其算法[J].管理工程学报, 2006, 20(3):82-103.
    [72]李相勇,田澎.带时间窗和随机时间车辆路径问题:模型和箅法[J].系统工程理论与实践, 2009, 29(8):81-90.
    [73]谢秉磊.随机车辆路径问题研究[D].西南交通大学, 2003.
    [74] Webber A. Ueber den standort der industrien. Erster Teil. Reine Theorie der Standorte. Mit einem mathematixchen Anhang von G. Pick. Tubingen, Germany: Verlag J. C. B. Mohr, 1909
    [75] Hakimi S L. Optimum locations of switching centers and the absolute centers and medians of a graph[J]. Operations Research, 1964, 12:450-459.
    [76] Wesolowsky G O, Truscott W G. The multiperiod location-allocation problem with relocation of facilities[J]. Management Science, 1976, 22(1):57-65.
    [77] Drezner Z. On the conditional p-median problem[J]. Computers & Operations Research, 1995, 22(4):525-530.
    [78] Hakimi S L. P-median theorems for competitive location[J]. Annals of Operations Research, 1986, 5(1):79-88.
    [79] Galvao R. The use of lagrangean relaxation in the solution of uncapacitated facility location problems[J]. Location Science, 1993, 1: 57-79.
    [80] ReVelle C S, Swain R W. Central facilities location. Geographical Analysis[J]. 1970, 2:30-42.
    [81] Densham P, Rushton G. A more efficient heuristic for solving large p-median problems[J]. Regional Science, 1992, 71:307-329.
    [82] Mladenovic N, Brimberg J, Hansen P, Moreno-Perez J. The p-median problem: A survey of metaheuristic approaches[J]. European Journal of Operational Research 2007, 79:927-939.
    [83] Drezner Z, Wesolowsky G O. A new method for the multifacility minimax location problem[J]. Journal of the operational research society, 1978, 24:1507-1514.
    [84] Chen R. Solution of minisum and minimax location-allocation problem with euclidean distances[J]. Naval Research Logistics Quarterly, 1983, 30:449-459.
    [85] Ward J E, Wendell R E. Using block norms for location modeling[J]. Operations Research, 1985, 33:1074-1090.
    [86] Levin Y, Ben-Israel A. A heuristic method for large-scale multi- facility locationproblems[J]. Computers & Operations Research, 2004, 31:257-272.
    [87] Roth R. Computer solutions to minimum cover problems[J]. Operation Research, 1969, 17: 455-465.
    [88] Toregas C, Swain R, ReVelle C, Bergman L. The location of emergency service facilities[J]. Operations Research, 1971, 19:1363-1373.
    [89] Beasley J E, Jornsten K. Enhancing an algorithm for set covering problems[J]. European Journal of Operational Research, 1992, 58:293-300.
    [90] Beasley J E, Chu P C. A genetic algorithm for the set covering problem [J]. European Journal of Operational Research, 1996, 94:392-404.
    [91] Berman O, Krass D, Drezner Z. The gradual covering decay location problem on a network [J]. European Journal of Operational Research, 2003, 151(3): 474-480.
    [92] Berman O, Krass D. The generalizedm maximal covering location problem[J]. Computers and Operations Research, 2002, 29(6): 563-581
    [93] Jaramillo J H, Bhadury J, Batta R. On the use of genetic algorithms to solve location problems[J]. Computers & Operations Research, 2002, 29:761-779.
    [94] Aytug H, Saydam C. Solving large-scale maximum expected covering location problems by genetic algorithms: A comparative study[J]. European Journal of Operation Research, 2002, 141:480-494.
    [95] Karasakal O, Karasaka E K. A maximal covering location model in the presence of partial coverage[J]. Computers & Operations Research, 2004, 31:1515-1526.
    [96] Kaj H, Jonas L. A lagrangean heuristic for the facility location problem with staircase costs[J]. European Journal of Operational Research, 1997, 97:63-74.
    [97] Drezner T, Drezner Z. Facility location in anticipation of future competition[J]. Location Science, 1998, 6(14):155-173.
    [98] Marianov V, Serra D. Location-allocation of multiple-server service centers with constrained queues or waiting times[J]. Annals of Operations Research, 2002, 111(1): 35-50.
    [99] Canel C, Khumawala BM, Law J, Loh A. An algorithm for the capacitated, multi-commodity multi-period facility location problem[J]. Computers & Operations Research, 2001, 28:411–427.
    [100] Antunes A, Peeters D. On solving complex multi-period location models using simulated annealing[J]. European Journal of Operational Research, 2001 130:190-201.
    [101] Hinojosa Y, Puerto J, Fernández FR. A multiperiod two-echelon multicommodity capacitated plant location problem[J]. European Journal of Operational Research, 2000, 123:271–291.
    [102] Hinojosa Y, Kalcsics J, Nickel S, Puerto J, Velten S. Dynamic supply chain design with inventory[J]. Computers & Operations Research, 2008, 35:373–391.
    [103] Melo MT, Nickel S, Saldanha-da-Gama F. Dynamic multi-commodity capacitated facility location: A mathematical modeling framework for strategic supplychain planning[J]. Computers & Operations Research, 2006,33:181–208.
    [104] Albareda-Sambola M, Fernandez E, Hinojosa Y, Puerto J. The multi-period incremental service facility location problem[J]. Computers & Operations Research, 2009, 36:1356–1375.
    [105]代颖.再制造物流网络优化设计问题研究[D].西南交通大学, 2006.
    [106]张长星.供应链中分销网络设计模型及算法研究[D].大连理工大学,2004.
    [107]赵晓煌.供应链中二级分销网络设计方法的研究[D].东北大学, 2002.
    [108]高梦昭.基于供应链的物流网络设计与运作研究[D].北方交通大学, 2005.
    [109]马云峰,杨超,张敏等.基于时间满意度的最大覆盖选址问题[J].中国管理科学, 2006, 14(2):45-51.
    [110]陈驰,任爱珠.消防站布局优化的计算机方法[J].清华大学学报(自然科学版), 2003, 43(10):1390-1393.
    [111]方磊,何建敏.综合AHP和目标规划方法的应急系统选址规划模型[J].系统工程理论与实践. 2003, 12(12):116-120.
    [112]秦固.基于蚁群优化的多物流配送中心选址算法[J].系统工程理论与实践, 2006, 4:120-124.
    [113]汪寿阳,赵秋红,夏国平.集成物流管理系统中的定位-运输路线安排问题的研究[J].管理科学学报, 2000, 3(2):69-75.
    [114]张潜,高立群,刘雪梅等.定位-运输路线安排问题的两阶段启发式算法[J].控制与决策, 2004, 7:773-777.
    [115]杨丰梅,华国伟,邓猛等.选址问题研究的若干进展[J].运筹与管理, 2005, 14(6):1-7.
    [116]黎青松,杨伟,曾传华.中心问题与中位问题的研究现状[J].系统工程,2005, 23(5):11-16.
    [117]王小翠.城市物流中心选址问题研究[D].武汉理工大学, 2008.
    [118]李延晖.基于供应链多阶响应周期的配送中心选址模型研究[D].华中科技大学, 2004.
    [119]周爱莲,李旭宏,毛海军.一类多周期的物流中心稳健性选址模型研究.系统工程学报, 2009, 24(6):688-748.
    [120]严冬梅,李敏强,寇纪淞.需求随时间变化的物流中心动态选址.系统工程, 2005, 23(6):30-33.
    [121]税文兵,叶怀珍,张诗波.物流配送中心动态选址模型及算法研究.计算机应用研究, 2010, 27(12):4476-4491.
    [122]龚延成.战时军事物流系统决策理论与方法研究[D].长安大学, 2004.
    [123]王慧.军事物流管理理论与运作模式研究[D].北方交通大学,2000.
    [124]张衡,花兴来.基于马尔科夫链的机动保障分队选址模型.军事运筹与系统工程, 2006, 20(3):35-38
    [125]王国华.中国现代物流大全:现代物流总论[M].北京:中国铁道出版社, 2004.
    [126]陶羿,朱建青,李明,杨绪华.军事物流选址分配模型及遗传算法优化[J].信息工程大学学报, 2007, 8(1):110-117.
    [127]王青,端木京顺,许磊.基于粒子群优化的军事物流配送中心选址[J].计算机工程与设计, 2009, 35(15):3597-3599.
    [128]晏湘涛,李东,匡兴华.基于共识度决策的军事物流配送中心选址研究[J].武汉理工大学学报(交通科学与工程版), 2010, 34(1):27-30.
    [129]王文峰.装备保障网络优化设计问题研究[D].国防科技大学, 2008.
    [130] Holland J H. Adaptation in natural and artificial systems[M]. Ann Arbor, MI: University of Michigan Press, 1975.
    [131] Glover F, Laguna M. Tabu Search[M], Boston: Kluwer Academic Publishers, 1997.
    [132] Glover F, Kelly J P, M Laguna. Genetic algorithms and tabu search: Hybrids for optimization [J]. Computers & Operational Research, 1995, 22:111-134.
    [133] Glover F, Laguna M, Taillard E, DeWerra D. Tabu Search[J]. Annals of Operational Research, 1993, 41.
    [134] Metropolis N, Rosenbluth A, Rosenbluth M. Equation of state calculation by fast computing machine[J]. Journal of Chemical Physics, 1953, 21:1087-1092.
    [135] Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulated annealing[J]. Science. 1983, 220: 671-680.
    [136] Deneubourg J L, Aron S, Goss S, Pasteels J M. The self-organizing exploratory pattern of the Argentine ant[J]. Journal of Insect Behavior, 1990, 3:159-168.
    [137] Kennedy J., Eberhart R. C., Particle swarm optimization[C]. Proc IEEE international conference on Neural Networks, USA:IEEE Press, 1995(4):1942-1948.
    [138]曾宪钊.军事最优化新方法[M].军事科学出版社, 2005.
    [139]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报, 2004, 32(3):416-420.
    [140] Shaw P. A new local search algorithm providing high quality solutions to vehicle routing problems. Technical report, Department of Computer Science, University of Strathclyde, Glasgow, 1997.
    [141] Shaw P. Using constraint programming and local search methods to solve vehicle routing problems[C]. Principles and Practice of Constraint Programming - CP98, Lecture Notes in Computer Science, Springer-Verlag Berlin, 1998, (1520):417-431.
    [142] Hansen P, Mladenovic N. Variable neighborhood search for the p-median[J].Location Science, 1997, 5:207-226.
    [143] Mladenovic N, Hansen P. Variable neighborhood search[J]. Computers & Operations Research, 1997, 24:1097-1100.
    [144] Laporte G, Musmanno R, Vocaturo F. An adaptive large neighbourhood search heuristic for the capacitated arc routing problem with stochastic demands[J]. Transportation Science, 2010, 44(1):125-135.
    [145] Gendreau M, Hertz A, Laporte G, Stan M. A generalized insertion heuristic for the traveling salesman problem with time windows[J]. Operations Research, 1998, 46(3):330-335.
    [146] Dueck G. New optimization heuristics: The great deluge algorithm and the record-to-record travel[J]. Journal of Computational Physics, 1993, 104(1):86-92.
    [147] Potvin J-Y, Rousseau J-M. A parallel route building algorithm for the vehicle routing and scheduling problem with time windows[J]. European Journal of Operational Research, 1993, 66(3):331-340.
    [148] Rousseau L-M, Gendreau M, Pesant G. Using constraint-based operators to solve the vehicle routing problem with time windows[J]. Journal of Heuristics, 2002, 8:43-58.
    [149] Braysy O. A reactive variable neighborhood search for the vehicle routing problem with time windows[J]. INFORMS Journal of Computing, 2003, 15:347-368.
    [150] Hansen P, Mladenovic N. Variable Neighborhood Search[J]. In: Burke EK, Kendall G (eds.) Search Methodologies. Springer-Verlag, Berlin, 2005:211-238.
    [151] Irnich S, Funke B, Grunert T. Sequential search and its application to vehicle-routing problems[J]. Computers & Operations Research, 2006, 33:2405-2429.
    [152] Kytojoki J, Nuortio T, Braysy O, Gendreau M. An efficient variable neighborhood search heuristic for very large scale vehicle routing problems[J]. Computers & Operations Research, 2007, 34:2743-2757.
    [153] Fleszar K, Osman I, Hindi K S. A variable neighborhood search algorithm for the open vehicle routing problem[J]. European Journal of Operational Research, 2009, 195:803-809.
    [154] Liu S-C, Chung C-H. A heuristic method for the vehicle routing problem with backhauls and inventory[J]. Journal of Intelligent Manufacture 20:29-42.
    [155] Hansen P, Mladenovic N, Perez J A M. Variable neighborhood search: methods and applications[J]. Annual of Operational Research 175:367-407.
    [156] Clarke G, Wright J W. Scheduling of vehicles from a central depot to a number of delivery points. Operation Research, 1964, 12:568-581.
    [157] Toth P, Vigo D. The granular tabu search and its application to the vehicle-routing problem. INFORMS Journal of Computing, 2003, 15:333-346.
    [158] Gen M, Cheng R. Genetic algorithms and engineering optimizations. New York: Wiley, 2000.
    [159] Mullaseril P, Dror M, Leung J. Split-delivery routing heuristics in livestock feed distribution. Journal of Operational Research Sociaty, 1997, 48:107-116.
    [160] Sierksma G, Tijssen G. Routing helicopters for crew exchanges on off-shore locations, Annual of Operational Research, 1998, 76:261-286.
    [161] Chen S, Golden B, Wasil E. The Split Delivery Vehicle Routing Problem: Applications, Algorithms, Test Problems, and Computational Results. Networks, 2007, 49(4):318-329.