点突变改造提高胆固醇氧化酶耐温性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了通过定向进化的手段获得耐温性能提高的短杆菌胆固醇氧化酶突变子,首先建立具有通用性的高通量筛选耐温性酶的方法,并通过散在点突变和活性中心点突变的方法对短杆菌来源的胆固醇氧化酶基因进行分子改造,选取性能改善的突变株在7L发酵罐中引入延时诱导培养基发酵培养重组菌。本论文主要内容涉及:
     (1)建立了一种以转印膜为基础的高通量筛选耐温性胆固醇氧化酶的方法。利用定位膜转印技术将原始平板保存,高温处理转印膜,将酶的热处理、酶与底物反应以及菌体生长分开。解决了重组菌筛选耐温性突变酶时菌体不耐温死亡的困难,只需要根据酶的不同显色机理调整筛选平板,即可适用于其他不耐温菌株中耐温突变酶的筛选。
     (2)对胆固醇氧化酶活性中心附近的氨基酸进行定点突变改造,突变酶的耐温性均得到不同程度的提高。50℃下保温2 h,原酶完全失活,而突变酶残留酶活性分别为9.06%、10.21%和40.69%。其中Q153E突变酶耐热性提高较为显著,在60℃下保温2 h,残留酶活仍可达36.46%。
     (3)对短杆菌胆固醇氧化酶基因进行点组合突变,以耐热性提高较为显著的Q153E突变酶为基础,突变获得M2(Q153E和F128L)和M3(Q153E、F128L和S143H)两个点组合突变酶。其中突变酶M2耐热性和酶催化能力均有所提高,50℃保温2 h残留酶活可达43.06%,其K_m值从原酶的820μmol/L减小至640μmol/L。
     (4)考察了不同诱导方式对菌体生长和产酶的影响,实验结果显示延时诱导方式培养比IPTG诱导更适合菌体生产胆固醇氧化酶。对7L发酵罐中延时诱导重组菌产酶进行优化,采用分阶段控制发酵过程温度、依据恒pH-star法发酵前期流加葡萄糖,后期流加含甘油和乳糖的复合诱导液,发酵终点时菌体浓度和酶活力可分别高达34.28 g/L和25.88 U/mL。
In this paper, in order to obtain the cholesterol oxidase mutations with improved thermotolerance by directed evolution, a common high-throughput screening method for selecting cholesterol oxidase mutants with improved thermotolerance had been estabilished. Site-directed mutagenesis was explored to transform the gene form Brevibacterium. The mutant with improved enzymatic properties was cultured in 7L fermentor by auto delay-induction. The main results are as follows:
     (1) A high-throughput screening method based on transfer film for selecting cholesterol oxidase mutants with improved thermotolerance had been estabilished. The original plate was saved by using the film transfer technology. The method takes advantage of the fact that the process of enzyme treatment and the reaction between enzymes with the substrate was separated effectively. Moreover, it solved a difficult problem that recombinant strain was easy to die when screening temperature was too high. It will also appling to other enzymes screening only by adjust the plate according to different mechanism.
     (2) Site-directed mutagenesis was applied to enhance the cholesterol oxidase thermotolerance by change the amino acid residue around active site. The thermotolerance of three mutants, Q153E, F128L and S143H, increased to varying degrees comparing with original enzyme. The relative activity was 9.06%, 10.21% and 40.69% respectively when incubated 2 hours at 50℃. Substitution of Gln153 with Glu revealed that the relative activity increased 36.46% when incubated 2 hours at 60℃.
     (3) The multiple mutagenesis based on Q153E with higher thermaltoletance improved was performed. Mutations of ChOAb -M2 (Q153E and F128L) and ChOAb -M3 (Q153E, F128L, and S143H) were constructed. The relative activity was 43.06% when incubated 2 hours at 50℃. The K_m values of ChOA_b -M2 was reduced from 820 to 640μmol / L.
     (4) The effects of cell growth and enzyme production induced by different methods were investigated. The result showed auto delay-induced was more suitable than IPTG-induced for cholesterol oxidase expression. Different culture strategies of recombinant strain in 7L fermentor were studied. Phased controls of fermentation temperature and pH were operated by different pH controlling mode during batch culture and pH-stat fed-batch culture. Two step fermentation processes was conducted based on the pH contract strategy. Glucose feeding solution was added during the first phase of culture. And lactose and glycerol mixture solution was added during the second phase. Then the cell density and enzyme activity reached 34.28 g/L and 25.88 U/mL, respectively.
引文
1. Turfitt G E. The microbiological degradation of steroids: 4. Fission of the steroid molecule[J]. Biochemical Journal, 1948, 42(3): 376-383.
    2. Schatz A, Savard K, Pintner I J. The ability of soil microorganisms to decompose steroids[J]. Journal of Bacteriology, 1949, 58(2): 117-125.
    3. Stadtman T C, Cherkes A, Anfinsen C B. Studies on the microbiological degradation of cholesterol[J]. Journal of Biological Chemistry, 1954, 206(2): 511-523.
    4. MacLachlan J, Wotherspoon A T L, Ansell R O, et al. Cholesterol oxidase: sources, physical properties and analytical applications[J]. Journal of Steroid Biochemistry and Molecular Biology, 2000, 72(5): 169-195.
    5. Coulombe R, Yue K Q, Ghisla S, et al. Oxygen access to the active site of cholesterol oxidase through a narrow channel is gated by an Arg-Glu pair. Journal of Biological Chemistry, 2001, 276(32): 30435-30441.
    6. Lim L, Molla G, Guinn N, et al. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase[J]. Biochemical Journal, 2006, 400: 13-22.
    7. Isobe K, Shoji K, Nakanishi Y, et al. Purification and some properties of cholesterol oxidase stable in detergents fromγ-proteobacterium Y 134[J]. Journal of Bioscience and Bioengineering, 2003, 95(3): 257-263.
    8. Wilmanska D, Sedlaczek L. The kinetics of biosynthesis and some properties of an extracellular cholesterol oxidase produced by Arthrobacter sp. IM 79[J]. Acta Microbiologica Polonica, 1988, 37(1): 45-51.
    9.法幼华,苏起恒,一株节杆菌胆固醇氧化酶的产生及其酶性质的研究[J].微生物学报, 1984, 24(3): 294.
    10. Petrova L, Podsukhina G M, Dikun T A, et al. Conditions for isolation of cholesterol oxidase from Actinomyces lavendulae mycelia[J]. Prikl Biokhim Mikrobiol, 1979, 15(2): 250-253.
    11. Uwajima T, Yagi H, Nakamura S, et al. Isolation and Crystallization of Extracellular 3β-Hydroxysteroid Oxidase of Brevibacterium sterolicum nov. sp[J]. Agricultural and Biological Chemistry, 1973, 37(10): 2345-2350.
    12. Doukyu N, Aono R. Purification of extracellular cholesterol oxidase with high activity in the presence of organic solvents from Pseudomonas sp. strain ST-200[J]. Applied and environmental microbiology, 1998, 64(5): 1929-1932.
    13. Doukyu N, Aono R. Cloning, sequence analysis and expression of a gene encoding an organic solvent- and detergent-tolerant cholesterol oxidase of Burkholderia cepacia strain ST-200[J]. Applied Microbiology and Biotechnology, 2001, 57(1-2): 146-152.
    14. Shirokane Y, Nakamura K, Mizusawa K. Purification and some properties of an extracellular 3β-hydroxysteroid oxidase produced by Corynebacterium cholesterolicum[J]. J. Ferment. Technol, 1977, 55: 337-346.
    15. Richmond W. Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum[J]. Clinical Chemistry, 1973, 19(12):1350-1356.
    16. Minuth T, Th(o|¨)mmes J, Kula M. Extraction of cholesterol oxidase from Nocardia rhodochrous using a nonionic surfactant-based aqueous two-phase system[J]. Journal of Biotechnology, 1995, 38(2): 151-164.
    17. Buckland B, Lilly M, Dunnill P. The kinetics of cholesterol oxidase synthesis by Nocardia rhodocrous[J]. Biotechnology and Bioengineering, 1976, 18(5): 601-621.
    18. Buckland B, Dunnill P, Lilly M. The enzymatic transformation of water-insoluble reactants in nonaqueous solvents. Conversion of cholesterol to cholest-4-ene-3-one by a Ncardia sp[J]. Biotechnology and Bioengineering, 1975, 17(6): 815-826.
    19. Cheetham P S J, Dunnill P, Lilly M D. The characterization and interconversion of three forms of cholesterol oxidase extracted from Nocardia rhodochrous[J]. Biochemical Journal, 1982, 201(3): 515-521.
    20. Cheetham P S J, Dunnill P, Lilly M D. Extraction of cholesterol oxidase from Nocardia rhodochrous[J]. Enzyme and Microbial Technology, 1980, 2(3): 201-205.
    21. Smith M, Zahnley J, Pfeifer D, et al. Growth and cholesterol oxidation by Mycobacterium species in Tween-80 medium[J]. Applied and environmental microbiology, 1993, 59(5): 1425-1429.
    22. Lee S, Rhee H, Tae W, et al. Purification and characterization of cholesterol oxidase from Pseudomonas sp. and taxonomic study of the strain[J]. Applied Microbiology and Biotechnology, 1989, 31(5): 542-546.
    23. Atrat P, Wagner B, Wagner M, et al. Localization of the cholesterol oxidase in Rhodococcus erythropolis IMET 7185 studied by immunoelectron microscopy[J]. Journal of Steroid Biochemistry and Molecular Biology, 1992, 42(2): 193-200.
    24. Watanabe K, Shimizu H, Aihara H, et al. Isolation and identification of cholesterol-degrading Rhodococcus strains from food of animal origin and their cholesterol oxidase activities[J]. Journal of General and Applied Microbiology, 1986, 32(2): 137-147.
    25. Watanabe K, Aihara H, Nakagawa Y, et al. Properties of the purified extracellular cholesterol oxidase from Rhodococcus equi No. 23[J]. Journal of Agricultural and Food Chemistry, 1989, 37(4): 1178-1182.
    26. Kreit J, Germain P, Lefebvre G. Extracellular cholesterol oxidase from Rhodococcus sp. cells[J]. Journal of Biotechnology, 1992, 24(2): 177-188.
    27. Wang C T, Cao Y P, Sun B G, et al. Preparation and some properties of cholesterol oxidase from Rhodococcus sp R14-2[J]. World Journal of Microbiology & Biotechnology, 2008, 24(10): 2149-2157.
    28. Sojo M, Bru R, Lopez-Molina D, et al. Cell-linked and extracellular cholesterol oxidase activities from Rhodococcus erythropolis. Isolation and physiological characterization[J]. Applied Microbiology and Biotechnology, 1997, 47(5): 583-589.
    29. Machang'u R, Prescott J. Purification and properties of cholesterol oxidase and choline phosphohydrolase from Rhodococcus equi[J]. Canadian Journal of Veterinary Research, 1991, 55(4): 332-340.
    30. Johnson T, Somkuti G. Isolation of cholesterol oxidases from Rhodococcus equi ATCC 33706[J]. Biotechnol. Appl. Biochem, 1991, 13: 196-204.
    31. Fukuyama M, Miyake Y. Purification and some properties of cholesterol oxidase from Schizophyllum commune with covalently bound flavin[J]. Journal of Biochemistry, 1979, 85(5): 1183-1193.
    32. Kenney W, Singer T, Fukuyama M, et al. Identification of the covalently bound flavin prosthetic group of cholesterol oxidase[J]. Journal of Biological Chemistry, 1979, 254(11): 4689-4690.
    33. Ishizaki T, Hirayama N, Shinkawa H, et al. Nucleotide sequence of the gene for cholesterol oxidase from a Streptomyces sp[J]. Journal of bacteriology, 1989, 171(1): 596-601.
    34. Lartillot S, Kedztora P. Production, purification and some properties of cholesterol oxidase from a Streptomyces sp[J]. Preparative Biochemistry and Biotechnology, 1990, 20(1): 51-62.
    35. Kamei T, Takiguchi Y, Suzuki H, et al. Purification of 3β-hydroxysteroid oxidase of Streptomyces violascens origin by affinity chromatography on cholesterol[J]. Chemical & Pharmaceutical Bulletin, 1978, 26(9): 2799-2804.
    36. Tomioka H, Kagawa M, Nakamura S. Some Enzymatic Properties of 3β-Hydroxysteroid Oxidase Produced by Streptomyces violascens[J]. Journal of Biochemistry, 1976, 79(5): 903-915.
    37. Kerenyi G, Szentirmai A, Natonek M. Properties of delta5-3β-hydroxysteroid oxidoreductase isolated from Streptomyces griseocarneus[J]. Acta microbiologica Academiae Scientiarum Hungaricae, 1975, 22(4): 487-496.
    38. Inouye Y, Taguchi K, Fujii A, et al. Purification and Characterization of Extracellular 3β-Hydroxysteroid Oxidase Produced by Streptoverticillium cholesterolicum[J]. Chemical & Pharmaceutical Bulletin, 1982, 30(3): 951-958.
    39. Kreit J, Lefebvre G, Germain P. Membrane-bound cholesterol oxidase from Rhodococcus sp. cells. Production and extraction[J]. Journal of Biotechnology, 1994, 33(3): 271-282.
    40. Chou C, Lee M, Chen W. Production of cholesterol oxidase by Rhodococcus equi No. 23 in a jar fermenter[J]. Biotechnology and Applied Biochemistry, 1999, 29(3): 217-221.
    41. Ohta T, Fujishiro K, Yamaguchi K, et al. Hyperexpression and analysis of choB encoding cholesterol oxidase of Brevibacterium sterolicum in Escherichia coli and Streptomyces lividans[J]. Biosci. Biotechnol. Biochem, 1992, 56(11): 1786-1791.
    42. Fujishiro K, Uchida H, Shimokawa K, et al. Purification and properties of a new Brevibacterium sterolicum cholesterol oxidase produced by E. coli MM294/pnH10[J]. Fems Microbiology Letters, 2006, 215(2): 243-248.
    43. Uwajima T, Yagi H, Terada O. Properties of crystalline 3β-hydroxysteroid oxidase of Brevibacterium sterolicum[J]. Agricultural and biological chemistry, 1974, 38(6): 1149-1156.
    44. Takeda Y, Aono R, Doukyu N. Purification, characterization, and molecular cloning of organic-solvent-tolerant cholesterol esterase from cyclohexane-tolerant Burkholderia cepacia strain ST-200[J]. Extremophiles, 2006, 10(4): 269-277.
    45. Wang, L G, Wang W. Coenzyme precursor-assisted expression of a cholesterol oxidase from Brevibacterium sp in Escherichia coli[J]. Biotechnology Letters, 2007, 29(5): 761-766.
    46. Sampson N S, Chen X. Increased Expression of Brevibacterium sterolicum Cholesterol Oxidase in Escherichia coli by Genetic Modification[J]. Protein Expression and Purification, 1998, 12(3): 347-352.
    47. Doukyu N, Shibata K, Ogino H, et al. Cloning, sequence analysis, and expression of a gene encoding Chromobacterium sp DS-1 cholesterol oxidase[J]. Applied Microbiology and Biotechnology, 2009, 82(3): 479-490.
    48. Pollegioni L, Piubelli L, Molla G. Cholesterol oxidase: biotechnological applications[J]. FEBS Journal, 2009. 276(23): 6857-6870.
    49. Molna′r I, Choi K, Hayashi N, et al. Secretory overproduction of Streptomyces cholesterol oxidase by Streptomyces lividans with a multi-copy shuttle vector[J]. Journal of Fermentation and Bioengineering, 1991, 72(5): 368-372.
    50. Kiatpapan P, Yamashita M, Kawaraichi N, et al. Heterologous expression of a gene encoding cholesterol oxidase in probiotic strains of Lactobacillus plantarum and Propionibacterium freudenreichii under the control of native promoters[J]. Journal of Bioscience and Bioengineering, 2001, 92(5): 459-465.
    51. Uwajima T, Terada O. On kinetics of cholesterol oxidase from Brevibacterium sterolicum in the presence of detergents[J]. Agricultural and biological chemistry, 1978, 42(7): 1453-1454.
    52. McGuinness E T, Brown H D, Chattopadhyay S K, et al. Cholesterol oxidase: Thermochemical studies and the influence of hydroorganic solvents on enzyme activity[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1978, 530(2): 247-257.
    53. Khmelnitsky Y L, Hilhorst R. Detergentless microemulsions as media for enzymatic reactions[J]. European Journal of Biochemistry, 1988, 176(2): 265-271.
    54. Pollegioni L, Wels G, Pilone M, et al. Kinetic mechanisms of cholesterol oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum[J]. European Journal of Biochemistry, 1999, 264(1): 140-151.
    55. Doukyu N, Shibata K, Ogino H, et al. Purification and characterization of Chromobacterium sp DS-1 cholesterol oxidase with thermal, organic solvent, and detergent tolerance[J]. Applied Microbiology and Biotechnology, 2008, 80(1): 59-70.
    56. Brooks C J W, Smith A G. Cholesterol oxidase: Further studies of substrate specificity in relation to the analytical characterisation of steroids[J]. Journal of Chromatography A, 1975, 112: 499-511.
    57. Smith A G, Brooks C J W. Application of cholesterol oxidase in the analysis of steroids[J]. Journal of Chromatography A, 1974, 101(2): 373-378.
    58. Smith A G, Brooks C J W. The substrate specificity and stereochemistry, reversibility and inhibition of the 3-oxo steroid delta 4-delta 5-isomerase component of cholesterol oxidase[J]. Biochemical Journal, 1977, 167(1): 121-129.
    59. Smith A G, Brooks C J W. Cholesterol oxidases: properties and applications[J]. Journal of steroid biochemistry, 1976, 7(9): 705-713.
    60. Gadda G, Wels G, Pollegioni L, et al. Characterization of cholesterol oxidase from Streptomyces hygroscopicus and Brevibacterium sterolicum[J]. European Journal of Biochemistry, 1997, 250(2): 369-376.
    61. Isobe K, Mori N, Wakao N. The second cholesterol oxidase produced byγ-proteobacterium Y-134[J]. Journal of Bioscience and Bioengineering, 2003, 96(3): 257-261.
    62. Ikawa S, Takita M, Ogura M. Steroids as substrates for cholesterol: oxygen oxidoreductase, with special reference to 3β-hydroxy bile acids[J]. Journal of Biochemistry, 1979, 85(6): 1447-1452.
    63. Ohlsson I, Nordstr?m B, Br?ndén C. Structural and functional similarities within the coenzyme binding domains of dehydrogenases[J]. Journal of Molecular Biology, 1974, 89(2): 339-354.
    64. Eventoff W, Rossmann M G. The evolution of dehydrogenases and kinases[J]. Critical Reviews in Biochemistry and Molecular Biology, 1975, 3(2): 111-140.
    65. Vrielink A, Lloyd L F, Blow D M. Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 ? resolution[J]. Journal of Molecular Biology, 1991, 219(3): 533-554.
    66. Yue Q K, Kass I J, Sampson N S, et al. Crystal Structure Determination of Cholesterol Oxidase from Streptomyces and Structural Characterization of Key Active Site Mutants[J]. Biochemistry, 1999, 38(14): 4277-4286.
    67. Cavener D R. GMC oxidoreductases: A newly defined family of homologous proteins with diverse catalytic activities[J]. Journal of Molecular Biology, 1992, 223(3): 811-814.
    68. Mattevi A, Fraaije M, Mozzarelli A, et al. Crystal structures and inhibitor binding in the octameric flavoenzyme vanillyl-alcohol oxidase: the shape of the active-site cavity controls substrate specificity[J]. Structure, 1997, 5(7): 907-920.
    69. Motteran L, Pilone M, Molla G, et al. Cholesterol oxidase from Brevibacterium sterolicum. The relationship between covalent flavinylation and redox properties[J]. Journal of Biological Chemistry, 2001, 276(21): 18024-18030.
    70. Leszczynski J F, Rose G D. Loops in globular proteins: a novel category of secondary structure[J]. Science, 1986, 234(4778): 849-855.
    71. Kato H, Tanaka T, Yamaguchi H, et al. Flexible loop that is novel catalytic machinery in a ligase. Atomic structure and function of the loopless glutathione synthetase[J]. Biochemistry, 1994, 33(17): 4995-4999.
    72. Pompliano D L, Peyman A, Knowles J R. Stabilization of a reaction intermediate as a catalytic device: Definition of the functional role of the flexible loop in triosephosphate isomerase[J]. Biochemistry, 1990, 29(13): 3186-3194.
    73. Larson E M, Larimer F W, Hartman F C. Mechanistic insights provided by deletion of a flexible loop at the active site of ribulose-1, 5-bisphosphate carboxylase/oxygenase[J]. Biochemistry, 1995, 34(14): 4531-4537.
    74. Sampson N S, Kass I J, Ghoshroy K B. Assessment of the role of an ? loop of cholesterol oxidase: a truncated loop mutant has altered substrate specificity[J]. Biochemistry, 1998, 37(16): 5770-5778.
    75. Li J, Vrielink A, Brick P, et al. Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases[J]. Biochemistry, 1993, 32(43): 11507-11515.
    76. Kass I J, Sampson N S. The importance of Glu361 position in the reaction catalyzed by cholesterol oxidase[J]. Bioorganic & medicinal chemistry letters, 1998, 8(19): 2663-2668.
    77. Yamashita M, Toyama M, Ono H, et al. Separation of the two reactions, oxidation and isomerization, catalyzed by Streptomyces cholesterol oxidase[J]. Protein engineering, 1998, 11(11): 1075-1081.
    78. Lario P I, Sampson N S, Vrielink A. Sub-atomic resolution crystal structure of cholesterol oxidase: What atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity[J]. Journal of Molecular Biology, 2003, 326(5): 1635-1650.
    79. Lyubimov A Y, Vrielink A. A structural study of the larvicidal cholesterol oxidase at atomic resolution[N]. Abstracts of Papers of the American Chemical Society, 2006, 231: 4-AGRO.
    80. Lyubimov A Y, Chen L, Sampson N S, et al. A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase[J]. Acta Crystallographica Section D-Biological Crystallography, 2009, 65: 1222-1231.
    81. Yin Y, Lario P, Vrielink A, et al. Kinetic and structural analysis of the role of asparagine 485 in the reaction catalyzed by cholesterol oxidase[N]. Abstracts of Papers of the American Chemical Society, 2001, 222: 218-BIOL.
    82. Lyubimov A Y, Heard K, Tang H, et al. Distortion of flavin geometry is linked to ligand binding in cholesterol oxidase[J]. Protein Science, 2007, 16(12): 2647-2656.
    83. Kass I J, Sampson N S. The isomerization catalyzed by Brevibacterium sterolicum cholesterol oxidase proceeds stereospecifically with one base[J]. Biochemical and biophysical research communications, 1995, 206(2): 688-693.
    84. Nishiya Y, Harada N, Teshima S I, et al. Improvement of thermal stability of Streptomyces cholesterol oxidase by random mutagenesis and a structural interpretation[J]. Protein Engineering Design and Selection, 1997, 10(3): 231-235.
    85. Caldinelli L, Iametti S, Barbiroli A, et al. Dissecting the structural determinants of the stability of cholesterol oxidase containing covalently bound flavin[J]. Journal of Biological Chemistry, 2005, 280(24): 22572-22581.
    86. Nishiya Y, Hirayama N. Alteration of substrate affinity of Streptomyces cholesterol oxidase for application to the rate assay of cholesterol in serum[J]. Clinica Chimica Acta, 1999, 287(1-2): 111-122.
    87. Toyama M, Yamashita M, Yoneda M, et al. Alteration of substrate specificity of cholesterol oxidase from Streptomyces sp by site-directed mutagenesis[J]. Protein Engineering, 2002, 15(6): 477-483.
    88. Xiang J, Sampson N S. Library screening studies to investigate substrate specificity in the reaction catalyzed by cholesterol oxidase[J]. Protein Engineering Design and Selection, 2004, 17(4): 341-348.
    89. Kreit J, Sampson N S. Cholesterol oxidase: physiological functions[J]. The FEBS journal, 2009, 276(23): 6844-6856.
    90. Sampson N S, Kass I J, Ghoshroy K B. Assessment of the role of an omega loop of cholesterol oxidase: a truncated loop mutant has altered substrate specificity[J]. Biochemistry, 1998, 37(16): 5770-5778.
    91. Yamashita M, Toyama M, Ono H, et al. Separation of the two reactions, oxidation and isomerization, catalyzed by Streptomyces cholesterol oxidase[J]. Protein Engineering Design and Selection, 1998, 11(11): 1075-1081.
    92. Puglielli, L,A L Friedlich,K D R Setchell, et al. Alzheimer disease beta-amyloid activity mimics cholesterol oxidase[J]. Journal of Clinical Investigation, 2005, 115(9): 2556-2563.
    93. Flegg H. An investigation of the determination of serum cholesterol by an enzymatic method. 1973: University of Birmingham.
    94. Allain C, Poon L, Chan C, et al. Enzymatic determination of total serum cholesterol[J]. Clinical Chemistry, 1974, 20(4): 470-475.
    95. Cheillan F, Lafont H, Termine E, et al. Comparative study of methods for measuring cholesterol in biological fluids[J]. Lipids, 1989, 24(3): 224-228.
    96. Srisawasdi P, Kroll M, Lolekha P. Advantages and disadvantages of serum cholesterol determination by the kinetic vs the end point method[J]. American journal of clinical pathology, 2007, 127(6): 906-918.
    97. Sugiuchi H, Uji Y, Okabe H, et al. Direct measurement of high-density lipoprotein cholesterol in serum with polyethylene glycol-modified enzymes and sulfated alpha-cyclodextrin[J]. Clinical Chemistry, 1995, 41(5): 717-723.
    98. Ahmad S, Roy P, Khan A, et al. Microbial transformation of sterols to C19-steroids by Rhodococcus equi[J]. World Journal of Microbiology and Biotechnology, 1991, 7(5): 557-561.
    99. Labaree D, Hoyte R, Hochberg R. A direct stereoselective synthesis of 7β-hydroxytestosterone[J]. Steroids, 1997, 62(6): 482-486.
    100. Alexander D L, Fisher J F. A convenient synthesis of 7α-hydroxycholest-4-en-3-one by the hydroxypropyl-β-cyclodextrin-facilitated cholesterol oxidase oxidation of 3β, 7α-cholest-5-ene-3,7- diol[J]. Steroids, 1995, 60(3): 290-294.
    101. Guo L, Wilson W, Pang J, et al. Chemical synthesis of 7-and 8-dehydro derivatives of pregnane-3, 17α, 20-triols, potential steroid metabolites in Smith-Lemli-Opitz syndrome[J]. Steroids, 2003, 68(1): 31-42.
    102. Wan XS, Hung T, Drew P, et al. Enzymatic degradation of cholesterol in milk[J]. Aust J Dairy Technol, 1990, 45(2): 50-52.
    103. Christodoulou S, Hung T, Trewhell M, et al. Enzymatic degradation of egg yolk cholesterol[J]. Journal of Food Protection, 1994, 57(10): 908-912.
    104. Jones S, Losso J. Enzyme-catalyzed cholesterol degradation in egg yolk[C]. In: IFT Annual Meeting & Food Expo. 2005: New Orleans, Louisiana
    105. Owen R, Mason A, Bilton R. The degradation of cholesterol by Pseudomonas sp. NCIB 10590 under aerobic conditions[J]. The Journal of Lipid Research, 1983, 24(11): 1500-1511.
    106. Aihara H, Watanabe K, Nakamura R. Degradation of cholesterol in egg yolk by Rhodococcus equi No. 23[J]. Journal of Food Science, 1988, 53(2): 659-660.
    107. Lv C F, Tang Y X, Wang L G, et al. Bioconversion of yolk cholesterol by extracellular cholesterol oxidase from Brevibacterium sp[J]. Food Chemistry, 2002, 77(4): 457-463.
    108. Purcell J, Greenplate J, Jennings M, et al. Cholesterol oxidase: a potent insecticidal protein active against boll weevil larvae[J]. Biochemical and biophysical research communications, 1993, 196(3): 1406-1413.
    109. Greenplate J T, Duck N B, Pershing J C, et al. Cholesterol oxidase: an o?static and larvicidal agent active against the cotton boll weevil, Anthonomus grandis[J]. Entomologia Experimentalis et Applicata, 1995, 74(3): 253-258.
    110. Trettnak W, Wolfbeis O. A fiberoptic cholesterol biosensor with an oxygen optrode as the transducer[J]. Analytical Biochemistry, 1990, 184(1): 124-127.
    111. Oyama N, Ikeda S, Suzuki M, et al. A redox-active polymer film mediated enzyme electrode for amperometric determination of free cholesterol[J]. Electroanalysis, 1991, 3(7): 665-671.
    112.王楠,马荣山.酶分子体外定向进化的研究进展[J].生物技术通报, 2007, (002): 63-66.
    113. Olsen M, Iverson B, Georgiou G. High-throughput screening of enzyme libraries[J]. Current opinion in biotechnology, 2000, 11(4): 331-337.
    114. Sambrook J, Russell D W.分子克隆实验指南[M].黄培堂译.科学出版社. Vol. 1252. 2002:
    115. Szilágyi A, Závodszky P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey[J]. Structure, 2000, 8(5): 493-504.
    116. Thompson M J, Eisenberg D. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability1[J]. Journal of Molecular Biology, 1999, 290(2): 595-604.
    117. Pace C N. Single surface stabilizer[J]. Nature Structural & Molecular Biology, 2000, 7(5): 345-346.
    118. Strub C, Alies C, Lougarre A, et al. Mutation of exposed hydrophobic amino acids to arginine to increase protein stability[J]. BMC biochemistry, 2004, 5(1): 9.
    119. Ohage E, Steipe B. Intrabody construction and expression. I. The critical role of VL domain stability1[J]. Journal of Molecular Biology, 1999, 291(5): 1119-1128.
    120. Strops P S, Mayo L. Contribution of Surface Salt Bridges to Protein Stability[J]. Biochemistry, 2000, 39(6): 1251-1255.
    121. Matthews B W. Structural and genetic analysis of protein stability[J]. Annual review of biochemistry, 1993, 62(1): 139-160.
    122. Kumar S, Tsai C J, Nussinov R. Factors enhancing protein thermostability[J]. Protein Engineering Design and Selection, 2000, 13(3): 179-191.
    123. Vrielink A, Lloyd L F, Blow D M. Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8? resolution[J]. Journal of Molecular Biology, 1991, 219(3): 533-554.
    124. Toyama M, Yamashita M, Yoneda M, et al. Alteration of substrate specificity of cholesterol oxidase from Streptomyces sp. by site-directed mutagenesis[J]. Protein engineering, 2002, 15(6): 477-483.
    125. Dieffenbach C, Dveksler G. PCR技术实验指南[M]. Vol. 71. 1998,北京:科学出版社. 88-113.
    126. Chen K F, Arnold H. Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media[J]. Nature Biotechnology, 1991, 9(11): 1073-1077.
    127. Harayama S. Artificial evolution by DNA shuffling[J]. Trends in biotechnology, 1998, 16(2): 76-82.
    128. Cadwell R C, JoyceG F. Randomization of genes by PCR mutagenesis[J]. Genome Research, 1992, 2(1): 28-33.
    129. Beckman R A, MildvanL A S, Loeb A. On the fidelity of DNA replication: manganese mutagenesis in vitro[J]. Biochemistry, 1985, 24(21): 5810-5817.
    130. Gelfand D H, White T J. Thermostable DNA polymerases. PCR protocols: a guide to methods and applications[M], ed. M.A. Innis, et al. Vol. 482. 1990, San Diego, CA: Academic Press
    131. Eckert K, Kunkel T. DNA polymerase fidelity and the polymerase chain reaction. Genome Research, 1991, 1(1): 17-24.
    132. Ling L L, Keohavong P, Dias C, et al. Optimization of the polymerase chain reaction with regard to fidelity: modified T7, Taq, and vent DNA polymerases[J]. Genome Research, 1991, 1(1): 63-69.
    133. Leung D W, Chen E, Goeddel D V. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction[J]. Technique, 1989, 1(1): 11-15.
    134. Shafikhani S, Siegel R, Ferrari E, et al. Generation of large libraries of random mutants in Bacillus subtilis by PCR-based plasmid multimerization[J]. Biotechniques, 1997, 23(2): 304-310.
    135. Zhou Y, Zhang X, Ebright R H. Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymerase[J]. Nucleic acids research, 1991, 19(21): 6052.
    136. Cadwell R C, Joyce G F, Mutagenic PCR[J]. Genome Res, 1994, 3: S136-S140.
    137. Fromant M, Blanquet S, Plateau P. Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction[J]. Analytical Biochemistry, 1995, 224(1): 347-353.
    138. Lin-Goerke J, Robbins D, Burczak J. PCR-based random mutagenesis using manganese and reduced dNTP concentration[J]. Biotechniques, 1997, 23(3): 409-412.
    139.钟学敏.重组E. coli产胆固醇氧化酶的提取、酶学性质及应用研究[D].硕士学位论文.江南大学生物工程学院, 2009.
    140. Perl D, Mueller U, Heinemann U, et al. Two exposed amino acid residues confer thermostability on a cold shock protein[J]. Nature Structural & Molecular Biology, 2000, 7(5): 380-383.
    141. Makhatadze G, Loladze V, Gribenko A, et al. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions[J]. Journal of Molecular Biology, 2004, 336(4): 929-942.
    142. Robinson-Rechavi M, Alibés A, Godzik A. Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima[J]. Journal of Molecular Biology, 2006, 356(2): 547-557.
    143. Wells J. Additivity of mutational effects in proteins[J]. Biochemistry, 1990, 29(37): 8509-8517.
    144. Baase W, Liu L, Tronrud D, et al. Lessons from the lysozyme of phage T4[J]. Protein Science, 2010, 19(4): 631-641.
    145. Studier F W, Moffatt B A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes[J]. Journal of Molecular Biology, 1986, 189(1): 113-130.
    146. Studier F W, Davanloo P, Rosenberg A H, et al. Cloning and expression of the gene for bacteriophage T7 RNA polymerase[P]. 1990, US Patents.
    147. Dubendorf J W, Studier F W. Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor[J]. Journal of Molecular Biology, 1991, 219(1): 45-59.
    148. Studier F W. Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system[J]. Journal of Molecular Biology, 1991, 219(1): 37-44.
    149. Studier F W. Protein production by auto-induction in high-density shaking cultures[J]. Protein expression and purification, 2005, 41(1): 207-234.