赤泥对污染稻田重金属钝化行为及其肥效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以赤泥为研究对象,通过在重金属污染稻田土壤上开展土壤培养试验、盆栽试验和田间试验,研究赤泥对重金属的吸附特征及钝化机理,探讨重金属在水稻植株-土壤系统中迁移及输入输出特性,揭示赤泥在钝化土壤潜在毒性元素中的行为与效果,阐明赤泥的肥效机制及其对水稻和土壤环境的作用机理和效果,提出赤泥在重金属污染稻田土壤上的适宜施用量,为赤泥在农业生产上安全、有效的应用提供理论依据。主要研究结果如下:
     施赤泥能显著降低土壤中交换态Pb、Zn和Cd含量,当赤泥用量为4%(W/W)时,培养30d、60 d和90 d后,交换态Pb含量分别比不施赤泥的对照处理下降了39.25%、41.38%和50.19%;交换态Zn含量分别比对照处理下降了49.26%、57.32%和47.16%;交换态Cd含量分别比对照处理下降了19.53%、24.06%和25.70%。赤泥对土壤的修复作用机理是赤泥对土壤中的重金属离子Pb2+、Zn2+和Cd2+等有较好的固着性能,使其从可交换状态转变为键合氧化物状态,从而使土壤中重金属离子的活动性和反应性降低。施用赤泥对土壤Pb、Zn和Cd五种形态所占总Pb、Zn和Cd的比重有明显影响,添加不同赤泥处理均降低了土壤中交换态Pb、Zn和Cd占总Pb、Zn和Cd的比重,且土壤中交换态Pb、Zn和Cd占总Pb、Zn和Cd的比重随赤泥施用量的增加而下降。
     施用赤泥、石灰和海泡石均能有效促进土壤交换态Cd稳定化,有利于重金属Cd的固定,但三种改良剂中以赤泥的Cd钝化效果最佳。与石灰、海泡石相比,施入赤泥处理土壤中可交换态Cd分别降低了1.81%和3.55%,糙米中镉含量分别下降了17.39%和26.32%。三种改良剂中施用赤泥的增产幅度较大,施用海泡石略有增产,施用石灰的处理产量略有下降。施用改良剂能增加水稻的气孔导度(Gs)、净光合速率(Pn)、胞间CO2浓度(Ci)及蒸腾速率(Tr),其中以施赤泥处理效果较明显。各改良剂处理剑叶面积均有不同程度的上升。与石灰和海泡石相比,添加赤泥更能起到缓解Cd对水稻生长的影响,降低Cd对水稻的伤害。
     在Pb、Zn和Cd严重污染的中性矿区土壤上,施用低量的0.25%(W/W)赤泥能促进水稻植株的生长和稻谷产量的增加。稻谷产量随赤泥施用量的增加呈先增加后下降的变化趋势,施0.25%(W/W)、0.5%(W/W)、0.75%(W/W)处理的稻谷产量较未施赤泥处理提高了12.04%、6.25%和4.40%;1.0%(W/W)和1.25%(W/W)处理较未施赤泥处理降低了0.23%和8.10%。施赤泥对降低作物体内Pb、Zn和Cd的含量有明显效果,以赤泥施用量较高的1.25%(W/W)处理效果最好,降幅分别达33.77%、9.84%和15.40%,但糙米中的Pb和Cd的含量仍未达食品卫生标准(Pb 0.4 mg/kg, GB14935-1994; Cd 0.2mg/kg,GB15201-95),锌含量低于50 mg/kg,达到食品卫生标准(Zn 50mg/kg,GB13106-1991)。Pb在水稻植株中的富集系数表现为:根>茎叶>壳>糙米,Zn和Cd在水稻植株中的富集系数表现为:根>茎叶>糙米>壳,且随着赤泥施用量的增加,水稻重金属Pb、Zn和Cd的富集能力降低。三种重金属的迁移能力由高到低的顺序为Cd>Zn>Pb。
     施适宜用量赤泥能促进水稻植株生长和稻谷产量增加;提高土壤pH和阳离子交换量,改善土壤微生物生存环境,促进土壤细菌、真菌、放线菌生长繁殖,增加土壤微生物量C (SMBC)、微生物量N (SMBN)含量;并能提高分蘖期土壤脲酶、酸性磷酸酶和过氧化氢酶的活性;但对有机质含量的影响不明显。其中,黄泥田上0.5%(W/W)赤泥施用量较其它施用量更有利于改善Cd污染水稻土生物学性状,提高土壤肥力,而潮泥田上为0.75%(W/W)赤泥施用量较适宜。施用赤泥能提高土壤pH,降低土壤交换态Cd含量,将交换态Cd转变为铁锰结合态和碳酸盐结合态,减少水稻糙米中Cd的累积量。当赤泥施用量达到或高于0.5%(W/W)时,两种土壤上水稻的糙米Cd含量达到国家粮食卫生标准。综合考虑水稻产量、土壤修复效应和糙米品质,黄泥田和潮泥田污染土壤上的推荐赤泥施用量分别为0.5%(W/W)和0.75%(W/W)。
     在中轻度Cd污染的酸性潮泥田上,稻谷产量随赤泥施用量的增加均呈先增加后下降的变化趋势。早稻以施4500 kg/hm2赤泥的最高,晚稻以施3000 kg/hm2赤泥的最高,分别比不施赤泥处理增加了11.36%和8.30%;早、晚稻水稻株高、有效穗和千粒重随赤泥施用量的增加均呈先增加后下降的变化趋势;而穗总粒随赤泥施用量的增加呈先下降后增加的变化趋势。水稻生长各时期土壤pH值随赤泥施用量的增加均有不同程度的提高,施用赤泥后土壤有效态Cd含量减少是土壤pH升高与土壤吸附能力增强共同作用的结果。水稻吸收累积Cd随赤泥施用量的增加而降低,其主要原因是施用赤泥后土壤有效态Cd含量减少。
     水稻产量在一定赤泥/猪粪比施用量范围内增加,但超过一定施用量后反而有所下降。早、晚稻水稻株高、有效穗、结实率和千粒重的变化趋势与稻谷产量的变化趋势基本一致;随着赤泥/猪粪比的增加,早、晚稻土壤有效态Cd含量逐渐降低。赤泥与猪粪配施可维持叶片中超氧化物岐化酶(SOD)和过氧化物酶(POD)的较高生理活性,降低丙二醛(MDA)在叶片中的积累,改善细胞内活性氧产生与清除之间的平衡关系。随着赤泥/猪粪比的增大,水稻糙米中镉含量逐渐减少。赤泥与猪粪配施对重金属Cd污染土壤的改良效应,存在一个最适配比(早稻,1.125;晚稻,0.625)的问题,并不是越多越好。
Absorption characteristics and passivation mechanism of red mud to heavy metals in contaminated paddy soil were studied through batch, pot and field experiments. I explored the characteristics of migration, input and output of heavy metals in soil-rice plant system, and revealed the behavior and efficiency of the red mud in passivation of the potential toxic elements in the soil. I also clarified the fertilizer efficiency of red mud and its impacts on the rice plant and soil environment. I also recommended the optimum amount of red mud application to provide a theoretic basis for the safe and effective application of red mud in agricultural production. The main results were as the follows:
     Application of red mud reduced soil exchangeable Pb, Zn and Cd content significantly. In comparison with the control, exchangeable Pb content was decreased by 39.25%, 41.38% and 50.19%, exchangeable Zn content was decreased by 49.26%,57.32% and 47.16%, and exchangeable Cd content was decreased by 19.53%,24.06% and 25.70% respectively after 30 d,60 d and 90 d of application of 4%(W/W) red mud. The remediation mechanism is that red mud has good fixing capacity on heavy metal ions such as Pb2+, Zn2+and Cd2+, which make them transformed from exchangeable state into a bonding oxide state. Consequently, mobility and reactivity of heavy metal ions in the soil were decreased. Application of red mud reduced the proportion of five forms of Pb, Zn and Cd, and reduced the proportion of soil exchangeable Pb, Zn and Cd to total Pb, Zn and Cd. Furthermore, the proportion of exchangeable Pb, Zn and Cd to total Pb, Zn and Cd decreased with the increasing amount of red mud application.
     Application of red mud, lime and sepiolite effectively promoted the stabilization of soil exchangeable Cd. Among them, the effect of red mud was the best. Compared with lime and sepiolite treatment, soil exchangeable Cd in the red mud treatment was decreased by 1.81% and 3.55% respectively, and Cd content in brown rice was decreased by 17.39% and 26.32% respectively. Among the three soil amendments, application of red mud can increase production dramatically, while lime and sepiolite application have no apparent effects on production. Application of soil amendments increased rice stomatal conductance (Gs), the net photosynthetic rate (Pn), intercellular CO2 concentration (Ci) and transpiration rate (Tr). Among them, the effect of application of red mud disposal is obvious. Each soil amendment increased the flag leaf area variously. Compared with lime and sepiolite, red mud application could alleviate the effect of Cd on rice growth and decrease Cd damage on rice plant.
     In Pb-, Zn- and Cd-polluted neutral mine soils, application of 0.25%(W/W) of red mud can promote the growth of rice plants and increase rice yield. Grain yield increased with increasing red mud application and then decreased. Compared with treatment without red mud application, grain yield increased by 12.04%,6.25% and 4.40% in treatments applied 0.25% (W/W),0.5% (W/W) and 0.75%(W/W) red mud respectively; decreased by 0.23% and 8.10% in treatments with 1% (W/W) and 1.25% (W/W) red mud application respectively. Application of red mud could significantly reduce Pb, Zn and Cd contents in rice plant, and the treatment with 1.25% (W/W) red mud application performed best, in which Pb, Zn and Cd contents reduced by 33.77%,9.84% and 15.40% respectively. Zinc content was below 50 mg/kg, which reached food hygiene standards (Zn 50 mg/kg, GB13106-1991). However, the Pb and Cd content in brown rice did not meet the food hygiene standards (Pb 0.4 mg/kg, GB14935-1994; Cd 0.2mg/kg, GB15201-95). Enrichment coefficients of Zn and Cd in rice plant were:root>stem and leaf>brown>shell, while Pb was root>stem and leaf>shell>brown. The enrichment capacity of rice plant on Pb, Zn and Cd reduced with the increasing application of red mud. Migration capacities of three heavy metals were:Cd>Zn>Pb.
     The appropriate application of red mud can apparently promote rice growth and increase rice yield. With increasing amount of red mud application, soil pH value and cation exchange capacity (CEC) increased. It can be concluded that the appropriate application of red mud can improve soil microbial survival environment, promote the reproduction of soil bacteria, fungi and actinomycetes, increase the soil microbial biomass carbon (SMBC) and nitrogen (SMBN) content, and improve soil urease, acid phosphatase and catalase activity at the tillering stage, whereas the influence of red bud application on the organic content is not obvious. For the yellow clayey paddy soil,0.5% (W/W) red mud application is more beneficial to improve the soil biological characteristics and soil fertility. For alluvial loamy paddy soil,0.75%(W/W) red mud application is optimum. The application of red mud can increased soil pH, reduce the content of soil exchangeable Cd, transform exchangeable Cd into iron manganese bound and carbonate bound, and reduce the cumulative amount of Cd in brown rice. When the amount of red mud application reached or was higher than 0.5%(W/W), Cd content in brown rice in two kinds of soil meet the national food hygiene standards. Considering the type of rice yield, the effect soil remediation and the quality of brown rice, the recommended amount of red mud application on the yellow clayey paddy soil and alluvial loamy paddy soil 1 were 0.5%(W/W) and 0.75%(W/W), respectively.
     In the Cd moderately contaminated acidity alluvial loamy paddy soil, grain yield increased with increasing red mud application and then decreased. In early rice, the yield in treatment with 4500 kg/hm2 red mud is highest. In late rice, the yield in treatment with 3000 kg/hm2 of red mud is highest. The grain yield in early rice and late rice was increased by 11.36% and 8.30%, respectively. Plant height, effective panicle number and 1000-grain weight in early rice and late rice were increased first and then decreased with increasing red mud application. Total grains in a particle decreased first and then increased with increasing red mud application. Soil pH value increased variably with increasing application of red mud during the stage of rice growth. Reduction of soil available Cd content was the combined results of increased soil pH value and soil adsorption capacity. The accumulation of Cd in rice decreased with increasing amount of red mud application. The primary reason is that soil available Cd content reduced after application of red mud.
     Grain yield increased within a range of red mud and pig manure ratio, but the yield decreased when beyond the upper limit amount of red mud. The changing trend of plant height, effective panicle, filled grain percent and 1000-grain weight is almost the same as the trend of grain yield in early rice and late rice. With red mud and pig manure ratio increases, soil available Cd content decreased gradually in early rice and late rice. The red mud-pig manure mixer can maintain higher physiological activity of superoxide dismutase (SOD) and peroxidase (POD) in blades, decreased the accumulation malondialdehyde (MDA) in leaves, and improved the balance relationship between generation and the clearance of intracellular reactive oxygen. With the red mud to pig manure ratio increases, the contents of cadmium in brown rice decreased gradually. The effect of red mud and pig manure on improvement of Cd-contaminated soil exists an optimal ratio (early rice,1.125; late rice,0.625), rather than the more the better.
引文
1.Ali K P, Pendias H. Trace elements in soil and plant[M]. Florida:Florida CRC Press,1992.
    2.Arao T, Ae N, Sugiyama M,et al. Genotypic differences in cadmium uptake and distribution in soybeans [J]. Plant Soil,2003,251:247-253.
    3.Baath E, Diaz-Ravina M, Frostegard A, et al. Effect of metal-rich sludge amendments on the soil microbial community [J]. Applied and Environmental Microbiology,1998,64:238-245.
    4.Barceloux D G, Barceloux D D. Zinc[J]. Clinical Toxicology,1999,37(2):279-292.
    5.Basta N T, Mcgowen S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil[J]. Environmental Pollution,2004,127:73-82.
    6.Bellinger D C, Stiles K M and Needleman H L. Low-level lead exposure, intelligence and academic achievement[J]. Pediatrics,1992,90:855-861.
    7.Bertocchi A F, Ghiani M, Peretti R, et al. Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn[J]. Journal of Hazardous Materials,2006,134(1/3): 112-119.
    8.Boisson J, Mench M, Sappin-Didier V, et al. Short-term in situ immobilization of Cd and Ni by beringite and steel short application to long-term sludged plots[J]. Agronomie,1998,18: 347-359.
    9.Boisson J, Ruttens A, Mench M, et al. Immobilization of trace metals and arsenic by different soil sdditives:evaluation by means of chemical extractions[J]. Communication in Soil Science and Plant Analysis,1999,30:365-387.
    lO.Brown S, Chaney R, Hallfrisch J, et al. Effects of biosolids processing on lead bioavailability in an urban soil[J]. Journal of Environmental Quality,2003,32:100-108.
    11.Brown S, Chaney R, Hallfrisch J, et al. In situ soil treatments to reduce the phyto- and bioavailability of lead, zinc and cadmium[J]. Journal of Environmental Quality,2004,33: 522-531.
    12.Brown S, Christensen B, Lombi E, et al. An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb and Zn in situ[J]. Environmental Pollution, 2005,138:34-35.
    13.Brunori C, Cremisini C, Massanisso P, et al. Reuse of a treated red mud bauxite waste:Studies on environmental compatibility[J]. Journal of Hazardous Materials,2005,117(1):55-63.
    14.Chamberlain A C. Fallout of lead and uptake by crops[J]. Atmospheric Environment,1983,17: 693-706.
    15.Chika C N, Alfedo J H. Silicon-induced cadmium resistance in rice (Oryza sativa)[J]. Journal of Plant Nutrition and Soil Science,2008,171:6,841-848.
    16.Dudka S, Miller W P. Accumulation of potentially toxic elements in plants and their transfer to human chain[J]. J Environ Science and health,1999,84(4):681-708.
    17.Edwards R, Rebedea I, Lepp N W, et al. An investigation into the mechanisms by which synthetic zeolites reduce labile metal concentrations in soil[J]. Environmental Geochemistry Health,1999,21:157-173.
    18.Farfel M R, Orlova A O, Chaney R L, et al. Biosolids compost amendment for reducing soil lead hazards:a pilot study of orgo amendment and grass seeding in urban yards[J]. The Science of the Total Enviroment,2005,340:81-95.
    19.Friesl W, Lombi E, Horak O, et al. Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study[J]. Journal of Plant Nutrtion and Soil Science,2003,166: 191-196.
    20.Friesl W, Horak O, Wenzel W W. Immobilization of heavy metals in soils by the application of bauxite residues:pot experiments under field conditions[J]. Journal of Plant Nutrtion and Soil Science,2004,167:54-59.
    21.Garau G, Castaldi P, Santona L, et al. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heteretrophic microbial populations and enzyme activities in a contaminated soil[J]. Geoderma,2007,142(1/2):47-57.
    22.Geeblen W, Adriano D C, Lelie D, et al. Selected bioavailability assays to test the efficacy of amendent-induced immobilization of lead in soil[J]. Plant and Soil,2003,249:217-228.
    23.Giovanni G, Paola C, Laura S, et al. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations ans enzyme activities in a contaminated soil[J]. Geoderma,2007,142:47-57.
    24.Gray C W, Dunham S J, Dennis P G, et al. Fields evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud[J]. Environ. Pollut.,2006,142:530-539.
    25.Gworek B.Inactivation of cadmium in contaminated soils using synthetic zeolites[J]. Environmental Pollution,1992a,75(3):269-271.
    26.Gworek B.Use of synthetic zeolites of 3A and 5A type for lead immobilization in anthropogenic soils[J]. Polish Journal of Soil Science,1992b,25(1):35-39.
    27.Gworek B. Lead inactivation in soils by zeolites[J]. Plant and Soil,1992c,143(1):71-74.
    28.Hettiarachchi G, Pierzynski G M. In situ stabilization of soil lead using phosphorus and manganese oxide[J]. Journal of Enviromental Quality,2002,31:564-572.
    29.Hoods P S, Alloway B J.The effect of liming on heavy metal concentrations in wheat, carrots and spinach grown on previously sludge-applied soils[J]. Agric. Sci.,1996,127:289-294.
    30.Huang W W, Wang S B, Zhu Z H, et al. Phosphate removal from wastewater using red mud[J]. Journal of Hazardous Materials,2008,158(1):35-42.
    31.Kumpiene J, Lagerkvist A, Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments[J]. Waste Management,2008,28:215-225.
    32.Lee T M, Lai H Y, Chen Z S. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soil[J]. Chemosphere,2004,57:1459-1471.
    33.Li L Y. A study of iron mineral transformation to reduce red mud tailing[J]. Waste Management, 2001,21:525-534.
    34.Liang Y C, Chen Q, Liu Q, et al. Exogenous silicon(Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.)[J]. Journal of Plant Physiology,2003,160(10):1157-1164.
    35.Lindsay W L, Norvell W A. Equilibrium relationships of Zn2+, Fe2+, Ca2+ and H+ with EDTA and DTPA in soils[J]. Proceedings of the Soil Science Society of America,1969,33:62-68.
    36.Liu Y,Lin C,Wu Y.Characterization of red mud derived from a combined Bayer Process and bauxite calcinations method[J]. Journal of Hazardous Materials,2007,146:255-261.
    37.Lombi E, Zhao F J, Zhang G Y, et al. In situ fixation of metals in soils using bauxite residue: chemical assessment[J]. Environmental pollution,2002a,118:435-443.
    38.Lombi E, Zhao F J, Wieshammer G, et al. In situ fixation of metals in soils using bauxite residue:biological effects[J]. Environmental Pollution,2002b,118:445-452.
    39.Lombi E, Hamon R E, Mcgrath S P, et al. Lability of Cd, Cu and Zn in polluted soils treated with lime, beringite, and red mud and identication of a mon-labile colloidal fraction of metals using isotopic techniques[J]. Environmental Science and Technology,2003,37:979-984.
    40.Luige P, Fausto P, Luisa S. Recovering metals from red mud generate during alumina production[J]. JOM,1993,45(11):54-59.
    41.Maddocks G, Lin C, Mcconchie D. Effects of bauxsolTM and biosolids on conditions of acid-generating mine soils for plant growth[J]. Environ Pollution,2004,127:157-167.
    42.Mcgowen S L, Basta N T, Brown G O. Use of diammonium phosphate to reduce metal solubility and transport in smelter-contaminated soil[J]. Journal of Environmental Quality,2001, 30(20):493-501.
    43.Melamed R, Cao X, Chen M. Field assessment of lead immobilization in a contaminated soil after phosphate application [J]. The Science of the Total Environment,2003,305:117-127.
    44.Mench M, Didier V, Loeffler M, et al. Evaluation of metal mobility, plant availability and immobilization by chemical agents in a limed silty soil[J]. Journal of Environmental Quality, 1994,23:58-63.
    45.Mench M, Manceau A, Vangronsveld J, et al. Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc[J]. Agronomie,2000,20:383-397.
    46.Muller I, Pluquet E. Immobilization of heavy metals in sediment dredged from a seaport by iron bearing materials[J]. Water Science and Technology,1998,37:379-386.
    47.Naidu R, Kookana R S, Sumner M E, et al. Cadmium sorption and transport in variable charge soils:a review[J]. Journal of Environmental Quality,1997,26:602-617.
    48.Nsam H. Development in soil microbiology since the Mid 1960s[J]. Geodema,2001,100(4): 389-402.
    49.Oehsenkhn-Petropulu M, LybempuluT, Ochsenkfuhn K M. Recovery of lanthanides and yttrium from red mud by selective leaching[J]. Analytiea Chrnica Acts,1996,319 (1/2): 249-254.
    50.Oste L, Lexmond T M, Riemsdijk W H. Metal immobiliztion in soils using synthetic zeolites[J]. Journal of Emvironmental Quality,2002,31:813-821.
    51.Panwar B S, Singh J P, Laura R D. Cadmium uptake by cowpea and mungbean as affected by Cd and P application[J]. Water, Air and Soil Pollution,1999,112:163-169.
    52.Phillips I R. Use of soil amendments to reduce nitrogen,phosphorus and heavy metal availability[J]. Journal of Soil Contamination,1998,7:191-212.
    53.Piqueras A, Olmos E, Martinez-solano J R, Hellin E. Cd-induced oxidative burst in tobacco BY2 cells:time course,subcellular location and antioxidant response[J]. Free Radic Res.,1999, 31:33-38.
    54.Prasad M N V. Cadmium toxicity and tolerance in vascular plant[J]. Envir. Exper. Botany., 1995,35(4):525-545.
    55.Puschenreiter M, Horak O, Friesl W, et al. Low-cost agricultural measures to reduce heavy metal transfer into the food chain-a review[J]. Plant Soil Environment,2005,51(1):1-11.
    56.Romero-Puertas M C, Mccarthy I, Sandalio L M, et al. Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes[J]. Free Rad Res.,1999,31:25-31.
    57.Santona L, Castaldi P, Melis P. Evaluation of the interaction mechanisms between red muds and heavy metals[J]. Journal of Hazardous Materials,2006,36:324-329.
    58.Shah K, Kumar R G, Verma S. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings[J]. Plant Sci.,2001, 161:1135-1144.
    59.Shirvani M, Kalbasi M, Shariatmadari H, et al. Sorption-desorption of cadmium in aqueous palygorskite, sepiolite and calcite suspensions:Isotherm hysteresis[J]. Chemosphere,2006a,65: 2178-2184.
    60.Shirvani M, Shariatmadari H, Kalbasi M, et al. Sorption of cadmium on palygorskite, sepiolite and calcite:Equilibria and organic ligand affected kinetics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006b,287:182-190.
    61.Silbergeld E K, Waalkes M, Rice J M. Lead as a carcinogen:experimental evidence and mechanisms of action[J]. American Journal of Industrial Medicine,2000,38:316-323.
    62.Simmons R W, Pongsakul P, Saiyasitpanic H D, et al. Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain down-stream of a zinc mineralized area in Thailand:Implicationfor public health[J]. Environmental Geochemistry and Health, 2005,27(5/6):501-611.
    63.Singh M, Upadhayay S N, Prasad P M. Preparation of iron rich cements using red mud [J].Cement and Concrete Res.,1997,27:1037-1046.
    64.Smirnov D I, Molchanova T V. The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production[J]. Hydrometallurgy,1997,45: 249-259.
    65.Snars K E, Gilkes R J, Wong M T F. The liming effect of bauxite processing residue (red mud) on sandy soils[J]. Australian Journal of Soil Research,2004,42:321-328.
    66.Sparrow L A, Salardini A A. Effects of residues of lime and phosphorus fertilizer on cadimium uptake and yield of potatoes and carrots[J]. Journal of plant nutrition,1997,20(1):1333-1349.
    67.Summers R N, Smirk D D, Karafilis D. Phosphorus retention and leachates from sandy soil amended with bauxite residue (red mud)[J]. Australian Journal of Soil Research,1996a,34: 555-567.
    68.Summers R N, Guise N R, Smirk D D, Summers K J. Bauxite residue (red mud) improves pasture growth on sandy soils in Western Australia[J]. Australian Journal of Soil Research, 1996b,34,569-581.
    69.Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51 (7):844-851.
    70.Trivedi S, Endei L. Effects of cadmium and lead on the accumulation of Ca2+ and K+ on the influx and translocation of K+ in wheat of low and high K+ statue[J]. Physiologic Plant,1992, 84(1):94-100.
    71. Van A F, Clijsters H. Effects of metals on enzyme activity in plants[J]. Plant Cell Environ,1990, 13:195-206.
    72.Vangronsveld J, Vanassche F, Clijsters H. Reclamation of a bare industrial area contaminated by non-ferrous metals:in-situ metal immobilization and revegetation[J]. Environmental pollution,1995,87(1):51-59.
    73.Vinod K G, Monika G, Saurabh S. Process development for the removal of leadand chromium from aqueous solutions using red mud-an aluminium industry waste[J]. Water Research,2001, 35(5):1125-1134.
    74.Waychunas G A, Kim C S, Banfield J F. Nanoparticulate iron oxide minerals in soils and sediments:unique properties and contaminant scavenging mechanisms [J]. Journal of Nanoparticle Research,2005,7:409-433.
    75. Wu J, Jogensen R G, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation:A automated procedure[J]. Soil Biology and Biochemistry,1990,22:1167-1169.
    76.Zhu C L, Luan Z K, Wang Y Q, et al. Removal of cadmium from aqueous solutions by adsorption on granular red mud (GRM)[J]. Separation and Purification Technology,2007,57: 161-169.
    77.蔡德龙,钱发军,邓挺,等.硅肥对花生增产作用试验研究-以黄河冲积平原土壤为例[J].地域研究与开发,1995,(4):48-50.
    78.蔡德龙,钱发军,陈常友,等.赤泥硅肥在玉米上试验研究[J].地域研究与开发,1997,(3):84-85.
    79.蔡德龙,钱发军,邓挺,等.硅肥在黄河冲积土上的水稻肥效试验研究[J].地域研究与开发,1998,3:62-64.
    80.曹瑛,李卫东,刘艳改.工业废渣赤泥的特性及回收利用现状[J].硅酸盐通报,2007,26(1):143-145.
    81.常学秀,施晓东.土壤重金属污染与食品安全[J].云南环境科学,2001,12(20):21-24,77.
    82.陈蓓,陈素英.赤泥的综合利用和安全堆存[J].化工技术与开发,2006,35(12):32-35.
    83.陈宏,陈玉成,杨学春.石灰对土壤中Hg、Cd、Pb的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.
    84.陈宏,陈玉成,杨学春.化学添加剂对土壤和莴笋中重金属残留量的影响试验[J].农业工程学报,2005,21(7):120-123.
    85.陈苏,孙丽娜,孙铁珩,等.钾肥对镉的植物有效性的影响[J].环境科学,2007,28(1):182-188.
    86.陈英旭.环境学[M].北京:中国环境科学出版社,2005.
    87.陈晓婷,王果,张潮海,方玲.石灰泥炭对镉铅锌污染土壤上小白菜生长和元素吸引的影响[J].土壤与环境,2001,11(1):17-21.
    88.崔力拓,耿世刚,李志伟.我国农田土壤镉污染现状及防治对策[J].现代农业科技,2006,184-185.
    89.邓日烈,李克敌,聂呈荣,等.不同改良剂对镉污染土壤上空心菜保护酶系统的影响[J].2008,26(1):73-76.
    90.董风芝,刘心中,姚德.粉煤灰和赤泥的综合利用[J].矿产综合利用,2004,6:37-39.
    91.杜彩艳,祖艳群,李元.石灰配施猪粪对Cd、Pb和Zn污染土壤中重金属形态和植物有效性的影响[J].武汉植物学研究,2008,26(2):170-174.
    92.高彬,王海燕.土壤pH对植物吸收镉、锌的影响试验[J].广西农业科学,2003,3:53-55.
    93.高卫国,黄益宗,孙晋伟,等.赤泥和堆肥对土壤锌形态转化的影响[J].农业环境科学学报,2008a,27(3):879-883.
    94.高卫国,黄益宗,雷鸣.添加堆肥和赤泥对土壤生物有效性Cd和Zn的影响[J].环境工程学报,2008b,2(1):78-82.
    95.关松荫等.土壤酶及其研究方法[M].北京:农业出版社,1986.
    96.郭观林,周启星,李秀颖.重金属污染土壤原位化学固定修复研究进展[J].应用生态学报,2005,16(10):1990-1996.
    97.何伯泉,周国华,薛玉兰.赤泥在环境保护中的应用[J].轻金属,2001,(2):24-26.
    98.恨蓉.苹果园施用硅钙镁肥的作用[EB/OL].中国化肥网,http://www.jinnong.cn/hf/news/2008/2/27/200822715124052709.shtml,2008-2-27.
    99.洪春来,贾彦博,杜培生,等.外源锌毒害的土壤微生物及酶学效应[J].农业与科技,2008,28(5):86-89.
    100.胡荣桂,李玉林.重金属Cd、Pb对土壤生化活性影响的初步研究[J].农业环境保护,1990,9(4):6-9.
    101.胡振琪,杨秀红,张迎春.重金属污染土壤的粘土矿物与菌根稳定化修复技术[M].北京:地质出版社,2006.
    102.黄建凤,吴吴.植物根系分泌的有机酸及其作用[J].现代农业科技,2008,20:323-324.
    103.黄永杰,杨红飞,张栋,等.锌胁迫对水花生生长和土壤酶活性的影响[J].上海交通大学学报(农业科学版),2009,27(4):403-408.
    104.姜浩,廖立兵,郑红,等.赤泥吸附垃圾渗滤液中COD和氨氮的实验研究[J].安全与环境工程,2007,14(3):69-73.
    105.景英仁,景英勤,杨奇.赤泥的基本性质及其工程特性[J].轻金属,2001,(4):20-23.
    106.利锋,张学先,戴睿志.重金属有效态与土壤环境质量标准制订[J].广东微量元素科学,2008,15(1):7-10.
    107.李红阳,牛树银,王宝德.矿物材料与环境污染治理-以粘土矿物和沸石为例[J].北京地质,2001,13(4):8-11.
    108.李华,贺洪军,高凤菊,等.钾肥对黄瓜根际土壤酶活性的影响[J].山东农业科学,2010,7:59-60.
    109.李瑞美,王果,方玲.钙镁磷肥与有机物料配施对作物镉铅吸收的控制效果[J].土壤与环境,2002,11(4):348-351.
    110.李瑞美,王果,方玲.石灰与有机物料配施对作物镉铅吸收的控制效果的研究[J].农业环境科学学报,2003,22(3):293-296.
    111.李明德,童潜明,汤海涛,等.海泡石对镉污染土壤改良效果的研究[J].土壤肥料,2005,(1):42-44.
    112.李怡帆,罗亚红,孙剑辉.赤泥对重金属污染土壤的修复效果[J].吉林农业,2010,6:142.
    113.李支援,张强.镉污染土壤的改良研究[J].工程设计与建设,2003,35(3):42-44.
    114.廖春发,卢惠明,邱定蕃,等.从赤泥中综合回收有价金属工艺的研究进展[J].轻金属,2003,10:18-22.
    115.廖育林,郑圣先,杨曾平,等.湖南双季稻种植区不同生产力水稻土微生物和生物化学性质的研究[J].水土保持学报,2010,24(4):222-228.
    116.廖自基.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社,1992,72-75.
    117.梁玉英,黄益宗,朱永官,等.赤泥对土壤磷素释放的影响[J].农业环境科学学报,2007,26(1):286-289.
    118.林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧化物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26:605-615.
    119.刘铭,刘凤枝,刘保峰.土壤中有效态铅和镉的测定[J].农业环境科学学报,2007(增刊),26:300-302.
    120.刘志阔,兰云峰.重金属污染与人体健康[J].科技园地,1991,(2):35.
    121.刘志彦,陈桂珠,田耀武.不同水稻品系幼苗对砷(As)的吸收、积累及转运[J].生态学报,2008,28(7):3228-3235.
    122.刘秀珍,赵兴杰,郭丽娜,等.膨润土和沸石对重金属镉的吸附性研究[J].山西农业大学学报(自然科学版),2009,29(2):97-99,103.
    123.刘昭兵,纪雄辉,王国祥,等.赤泥对Cd污染稻田水稻生长及吸收累积Cd的影响[J].农业环境科学学报,2010,29(4):692-697.
    124.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    125.赖兰萍,周李蕾,韩磊,等.赤泥综合回收与利用现状及进展[J].四川有色金属,2008,1:43-48.
    126.聂呈蓉,杨文瑜,邓日烈,等.不同改良剂对镉污染土壤的改良效果及对油麦菜生长的影响[J].佛山科学技术学院学报(自然科学版),2010,28(4):1-5.
    127.彭坷珊.中国耕地资源严重失衡与摆脱困境之途径[J].长江流域资源与环境,1995,4(1):90-94.
    128.齐笑笑,肖家欣,徐春丽,等.锌胁迫对3种柑橘砧木的生理特性和锌分配的影响[J].中国农学通报,2009,25(24):313-317.
    129.秦天才,阮捷,王腊娇.镉对植物光合作用的影响[J].环境科学与技术,2000(增刊),90: 33-35,44.
    130.秦天才,吴玉树,王焕校.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14:46-50.
    131.邱立萍.砷污染危害及治理技术[J].新疆环境保护,1999,21(3):15-19.
    132.邵孝候,胡霭堂,秦怀英.添加石灰、有机物料对酸性土壤Cd活性的影响[J].南京农业大学学报,1993,16(2):47-52.
    133.沈桂琴,廖瑞章.重金属、非重金属、矿物油对土壤酶活性的影响[J].农业环境保护,1987,6(3):24-27.
    134.石磊.赤泥的综合利用及其环保功能[J].中国资源综合利用,2007,25(9):14-16.
    135.施农农.镉中毒水稻苗期体内总蛋白量和POD, CAT活性的变化[J].土壤,2000,32(3):125-129.
    136.唐立娟,赵明宪,庄国臣.铜的单元及复合污染中水稻对Cu吸收累计规律的研究[J].农业环境科学学报,2003,22(4):503-504.
    137.万云兵,仇荣亮,陈志良,张景书.重金属污染土壤提高植物提取修复功效的探讨[J].环境污染治理技术与设备,2002,3(4):56-59.
    138.王爱国,罗广华,邵从车,等.大豆种子超氧化物歧化酶的研究[J].植物生理学报,1983,9:77-84.
    139.王慧忠,何翠屏,赵楠.铅对草坪植物生物量与叶绿素水平的影响[J].草业科学,2003(6):73-75.
    140.王焕校,孙赛初.高等水生植物中镉的富集分配规律及危害[J].环境科学报,1984,4(3):25-34.
    141.王立群,罗磊,马义兵,等.不同钝化剂和培养时间对Cd污染土壤中可交换态Cd的影响[J].农业环境科学学报,2009,28(6):1098-1105.
    142.王林江,谢襄漓,文小年.赤泥在环境污染修复中的应用[J].桂林工学院学报,2004,24(3):381-383.
    143.王凯荣.我国农田镉污染现状及其治理利用对策[J].农业环境保护,1997,16(6):274-278.
    144.王洋,刘景双,王金达,等.土壤pH值对冻融黑土重金属Cd赋存形态的影响[J].农业环境科学学报,2008,27(2):574-578.
    145.夏增禄.土壤环境容量及其应用[M].北京:气象出版社,1988.
    146.夏家淇.土壤环境质量标准详解[M].北京:科学出版社,1996.
    147.谢晓丽,陈仁忠,冯晔.广州市不同区域水稻质量状况及其污染源探讨[J].土壤与环境,2002,11(3):264-267
    148.徐进修,罗修连.赤泥的综合利用和有价金属的回收工艺综述[J].广西冶金,1994,(4): 19-29.
    149.徐明岗,张青,曾希柏.改良剂对黄泥土镉锌复合污染修复效应与机理研究[J].环境科学,2008,28(6):1361-1366.
    150.徐卫红,熊治庭,王宏倍,等.锌胁迫对重金属富集植物黑麦草养分吸收和锌积累的影响[J].水土保持学报,2005,19(4):32-33.
    151.许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    152.许智芳,苏爱玲,张新峰,等.氧化铝赤泥的综合回收及利用现状[J].山东冶金,2010,32(3):8-12.
    153.杨秀红,胡振琪,高爱林,等.环境修复材料钠化改性膨润土对土壤环境改良的研究[J].稀有金属材料与工程,2005,6:1092-1095.
    154.杨崇洁.几种金属元素进入土壤后的迁移转化规律及吸附机理的研究[J].环境科学,1990,10(3):2-8.
    155.尹中林.从苹果铝矿的拜尔法赤泥中提取氧化钪的初步试验研究[J].铝镁通讯,1995,(3):16-23.
    156.张慧,党志,姚丽贤,等.镉芘单一污染和复合污染对土壤微生物生态效应的影响[J].农业环境科学学报.2007,26(6):2225-2230.
    157.张建业,张莲英.锌与前列腺肿瘤的关系[J].微量元素与健康研究,1996,3:57-59.
    158.张强,李支援.海泡石对镉污染土壤的改良效果[J].湖南农业大学学报,1996,22(4):346-350.
    159.张亚丽,其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报,2001,38(2).212-218.
    160.张小全,徐德应,赵茂盛,等.C02增长对杉木中龄林针叶光合生理生态的影响[J].生态学报,2000,20(3):390-396.
    161.张志良.植物生理学试验指导[M].北京:高等教育出版社,1990.
    162.郑雁,郑红,赵磊,等.赤泥除氟效果及吸附特性研究[J].有色矿冶,2008,24(5):38-41.
    163.周文献,谢友均,刘宝举.赤泥对粉煤灰激发作用的试验研究[J].混凝土,2002,(1):37-40.
    164.朱奇宏,黄道友,刘国胜,等.海泡石对典型水稻土镉吸附能力的影响[J].农业环境科学学报,2009,28(11):2318-2323.