用户名: 密码: 验证码:
基于非局部理论的ZTA纳米复相陶瓷超声加工延性高效本质特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对陶瓷的脆性、不均匀性以及较低的韧性和强度,超声波加工作为最有效的方法之一被提出。为了更好的研究陶瓷材料的超声波加工技术,解释超声磨削中的高效延性的现象。本文基于非局部理论,着重于探索超声波与ZTA纳米复相陶瓷材料的作用机理,从磨削力特性、材料去除效率和磨削表面微观形貌等方面阐述了超声频率对陶瓷加工特性的影响,揭示了超声加工时所产生的延性高效现象的理论本质,为进一步完善超声加工的理论奠定了基础。本文主要研究内容包括:
     通过对ZTA纳米复相陶瓷的内禀长度和外部超声波长之间作用关系的研究,分析了材料在超声振动作用下的力学行为,引入非局部理论,建立了超声下的本构模型。通过ZTA纳米复相陶瓷试件波速实验,得出波速与频率的关系,解释了波速的衰减现象。根据波速的测量结果,通过计算获得了标准化非局部模量(非局部模量与经典模量的比值)随频率以及影响域的变化规律。针对标准化非局部模量进行积分计算,得出超声下的非局部应力衰减规律。通过超声磨削实验,研究了超声振动频率对磨削力的影响,进一步验证了超声下的本构模型。
     针对超声磨削过程中磨削表面裂纹的疲劳断裂过程在动态下难以测量的情况,设计了疲劳等效实验,从而模拟实际加工过程的受力状况进行磨削疲劳研究。本文着重于研究大进给量磨削(5μm-15μm)和小进给量磨削(2μm-5μm)两种情况,分别采用大载荷循环加载和小载荷循环加载的两种实验方式进行分析。针对大载荷循环加载,采用修正后的Morrow方程进行等效转换,并进行疲劳等效实验,得出超声磨削裂纹断裂寿命与应力振幅的关系。而对于小载荷循环加载,通过逐级加载的实验方式,获得了不同超声频率下的裂纹断裂时间与强度,从相似的角度揭示了在小进给磨削过程中,磨削表面裂纹随超声频率升高而受到较强抑制作用,表面质量得到提高。
     为了获得超声频率对ZTA纳米复相陶瓷磨削效率(超声下临界切削厚度、脆延转变以及材料去除率)的影响规律,通过超声振动下轴向拉伸实验,研究超声下的断裂强度和动态断裂韧性随频率的变化规律。对比不同频率下的拉伸力学行为及试件断口微观特征的变化,并基于非局部理论的应力衰减原理,解释了超声下断裂强度随频率升高而降低的原因。通过超声振动下的磨削表面硬度实验以及磨削率实验,得出超声下的等效硬度值及磨削率随超声频率的变化趋势。根据实验结果分析得出,超声振动作用增大了临界切削厚度,扩大了脆延转变范围,提高了材料磨削去除率,进一步阐述了超声磨削中的高效延性本质特征。
     通过超声刻划及超声磨削实验,针对0kHz、19.9 kHz、29.3 kHz和35.6 kHz多个频点下的超声振动磨削表面质量进行研究,借助扫描电镜、XRD、白光干涉仪等检测手段,对磨削表面粗糙度、相变以及磨削表面轮廓进行检测,发现超声振动频率能够对ZTA纳米复相陶瓷磨削表面微观特性以及材料去除方式产生影响,改变了超声振动下的单颗磨粒刻划轨迹,从本质上解释了表面质量提高的原因。通过超声磨削表面的XRD物相峰形图来分析超声频率对相变的影响规律,进一步从微观的角度说明了表面质量与磨削频率的关系。
Due to the large brittleness, bad uniformity, low reliability, less malleability and intensity, ultrasonic machining is used as an effective supplementary method for finishing advanced ceramics. In order to better research the ultrasonic machining technology and explain the essential characteristic of high efficiency and ductility. Based on the nonlocal theory, the research pays more attention to the action mechanism of ZTA nano-composite ceramics and ultrasonic vibration to illustrate the effects of ultrasonic vibration on grinding characteristics that from aspects of grinding force, grinding frequency, material removal rate and SEM of grinding surface etc, which discloses the essential characteristic of high efficiency and ductility and establishes the theory base. The main work and achievement of the paper is as follows:
     The mechanics behavior under the action of ultrasonic vibration is analyzed according to the relationship between the internal character length and the external character length (i.e. ultrasonic wave length) for ZTA composite nano-ceramics. To explain this phenomenon, the nonlocal theory is introduced to establish the constitutive model under the ultrasonic condition. The wave velocity attenuation and the relationship between wave velocity and frequency are obtained through the wave velocity experiment. According to the results, the variation of normalized nonlocal moduli with different frequencies are calculated (the ratio of nonlocal moduli and classical moduli). When the normalized nonlocal moduli are integrated, the nonlocal stress attenuation rule can be obtained. The influence of ultrasonic frequencies on grinding force is researched through the ultrasonic grinding experiment, which also verifies the constitutive model under the action of ultrasonic vibration.
     As the fatigue and fracture process of grinding crack is difficult to measure during the ultrasonic grinding, the equivalent experiment is designed to study the actual grinding process. Both large (5μm-15μm) and small (2μm-5μm) feeding process are researched with corresponding loading styles. As the large load, the equivalent experiment is designed according to the modified function of Morrow, and the relationship between the crack fracture life and stress amplitude can be obtained. Otherwise, as the small load style is utilized, the relationship between fracture strength and life can be also acquired by specified loading process with step by step. In this way, the conclusion can be acquired that the suppressed grinding cracks and enhanced grinding surface quality can be achieved with higher frequencies.
     In order to obtain the influence of ultrasonic frequencies on the grinding efficiency, i.e. critical cutting thickness, brittle-ductility transition and material removal rate, the variation of the fracture strength and dynamic fracture toughness with frequencies are researched through the axial tensile experiment. Based on the nonlocal theory, the mechanical behavior and microcosmic characteristic with different frequencies are compared to explain the reduction of fracture strength. Through the experiments of equivalent grinding surface rigidity and grinding material removal rate, the change trend of equivalent rigidity and material removal rate with frequencies are acquired. According to the results, the action of ultrasonic vibration enlarges the critical cutting thickness, increases the transition range and the grinding material removal rate, by which the high efficiency and ductility characteristic is illustrated.
     Through the ultrasonic single-point scratching test and ultrasonic grinding experiment, the surface quality of ultrasonic grinding using frequencies of 0 kHz, 19.9 kHz, 29.3kHz and 35.6 kHz are researched respectively. It is found that the microcosmic characteristic and material removing style can be influenced by ultrasonic frequencies according to the experiments of grinding surface roughness, phase transition and surface profile,which illustrates the reason of the improvement of surface quality essentially. Finally, through the XRD experiment, the phase transition of ZrO_2 with the action of ultrasonic vibration can be observed, which further shows the relationship between surface quality and grinding frequencies in microscopic views .
引文
[1] David J.Green著,龚江宏译,陶瓷材料理论学性能导论,清华大学出版社,2003
    [2] H. G. Wobker and H. K. T?nhoff. High Efficiency Grinding of Structural Ceramics, NIST Special Publication, Machining of Advanced Materials, 1993, 847:171-183
    [3]任敬心,史兴宽.磨削技术的新进展-硬脆材料光滑表面的超精磨削.中国机械工程, 1997, 8(4):106-110
    [4] J.Karch, R.Birringer and H.Gleiter, Ceramics ductile at low temperature. Nature, 1987, 330 (6148): 556-558
    [5]张立德,解思深主编,纳米材料和纳米结构——国家重大基础研究项目新进展.化学工业出版社, 2005
    [6]铃木弘茂主编,陈世兴译.工程陶瓷.科学出版社,1989
    [7] E. Uhimann, G.Spur. Surface Formation in Feed Grinding of Advanced Ceramics with and Without Ultrasonic Assistance. Annals of the CIRP. 1998, 47(1): 249-252,
    [8]隈部淳一郎,精密加工振动(基础与应用).北京:机械工业出版社,1985.
    [9]马辉,赵波,谢萍,闫艳燕.基于非局部理论的超声振动下陶瓷裂纹扩展机理研究.中国机械工程, 2009, 20(12)
    [10] Zhao B, Ma H, Xie P. Study on the Ceramic grinding Crack Propagation Mechanism Under the Ultrasonic Action by Using Nonlocal Theory. Advanced Materials Research. 2009, 69-70: 64-68
    [11]刘传绍,赵波,高国富,焦锋,王德胜.粗磨粒金刚石油石超声珩磨ZrO2陶瓷的延性特征.制造技术与机床. 2001, 02
    [12] BoZhao, Chuanshao Liu, et al.. Surface characteristics in the ultrasonic ductile honing of ZrO2 ceramics using coarse grits. Journal of Materials Processing Technology. 2002, 123(1): 54-60
    [13] Jiao F,Zhao B et al. Research on Ultrasonic Honing Performance of Zro2 EngineeringCeramics Using Diamond Oil-stone with Coarse Grains, Key Engineering Materials. 2004, 258-259: 297-301
    [14] ZhaoB, Zhu X.S., Liu C.S. and Jiao F. Research on Relationships Between Surface Fracture States and Surface Roughness Dispersion Range in Ultrasonic Grinding ZrO2. Key Engineering Materials, 2004, 258-259: 239-243
    [15]高国富,赵波,焦锋.细磨粒超声珩磨ZrO2表面特征研究.金刚石与磨料磨具工程. 2003, 3:36-39
    [16] Zhao B, Yan Y.Y., Wu Y., Jiao F., Liu C.S. Study on Motion Model of Abrasive Particle and Surface Formation Mechanics under Two Dimensional Ultrasonic Grinding. Key Engineering Materials. 2005, 315-316: 314-318
    [17] F Jiao, B.Zhao, X.S.Zhu and Q.T.Fan. Ultrasonic Dressing of Grinding Wheel and Its Influence on Grinding Quality,Key Engineering Materials. 2006, 304-305: 62-65
    [18] Yanyan Yan, Bo Zhao, Yan Wu. Chuanshao Liu,Xunsheng Zhu,Study on Material Removal Mechanism of Fine-crystalline ZrO2 Ceramics under Two Dimensional Ultrasonic Grinding. Materials Science Forum. 2006, 532-533: 532-535
    [19]穆柏春等著.陶瓷材料的强韧化.冶金工业出版社,2002
    [20]陈永胜,胡永强,余雷,赵博.工程陶瓷材料的现状及发展趋势,金刚石磨料磨具工程. 1998, 2(104): 37-39
    [21]张希华,张建华,刘长霞.氧化铝基陶瓷材料增韧研究现状及其发展方向.山东大学学报(工学版), 2004, 5: 14-17
    [22]王昕,孙康宁等.纳米复合陶瓷材料的研究进展,复合材料学报, 1999, 16(1): 105-109
    [23]新原皓一,セぅミツクス构造材の新しぃ材料设计-ナノ复合材料,日本セぅミツクス协会学论文志(日). 1991, 99(10): 974-982
    [24]阚艳梅,靳喜海.复相陶瓷的内在增韧机制及其影响因素.陶瓷学报. 1998, 19(4):221-224
    [25]李德溥,姚英学,袁哲俊.颗粒增强金属基复合材料加工技术进展.工具技术. 2006, 40(10): 3-9
    [26] Wu X. J., Su and Qin X. Y. Synthesis and ionic conductivity of nanophase Ca1-xLaxF2+x . Mater Res Soc Symp Proc, 1993, 286: 27–32
    [27]新原皓一.セヲシックス. Strength and toughness of brittle ceramic materials. 1990, 25(1): 17-18
    [28]单妍,王昕,尹衍升,孙康宁, ZTA纳米复相陶瓷的研究.硅酸盐通报. 2002, 2: 43-46
    [29]顾巍,杨建,丘泰,祝社民.原位合成(TiB2+ TiC)/Ti3SiC2复相材料及其性能研究.无机材料学报2010, 25(10): 1081-1086
    [30] Gleiter M. Nanocrystalline Materials. Advanced Structural and Functional Materials. 1991, 1-37.
    [31]新原皓一, .é?£复合体のa ?构造制御と机械的性质1粉体ぉよび粉末冶金. 1990, 37 (2) : 348~351
    [32] Komarmemi S., Parker J.C., Wollenberqer. H.J.. Nanophase and nanocomposite materials II. Materials Research Society. 1997, 457:13-25
    [33]张凯锋,骆俊廷,陈国清,王国锋.纳米陶瓷超塑加工成形的研究进展.塑性工程学报. 2003, 10 (1): 1-3
    [34]王硕.内晶型ZrB_2-SiC陶瓷基复合材料的制备与形成机理研究.[硕士学位论文],2009
    [35] Garvie R. C., Hannink R. H., and Pascoe R. T. Ceramic Steel. Nature (London). 1975, 258: 703-704
    [36]李红彦.四方氧化锆陶瓷复合材料评述.中国陶瓷. 1998, 34(5): 30-31
    [37] T. Rouxel, F. Wakai, K. Izaki. Tensile Ductility of Superplastic Al2O3-Y2O3-Si304/SiC Composites. J. Am. Ceram. Soc. 1992, 75(9): 2363-2372.
    [38]陈国清. Al2O3-ZrO2纳米复相陶瓷制备与超塑性成形研究.黑龙江:哈尔滨工业大学材料科学与工程学院, 2004.
    [39]靳喜海,高濂.纳米复相陶瓷.化工进展, 2003,22(6): 553-558
    [40]王宏志,高濂,归林华,等. Al2O3-ZrO2 (3Y)-SiC纳米复合材料的制备及性能.无机材料学报. 1999, 14(2): 280-286
    [41]张云电.超声加工及其应用.北京:国防工业出版社, 1995
    [42] Thoe T. B., Aspinwall D. K., Killey N. Combined ultrasonic and electrical discharge machining of ceramic coated nickel alloy. Journal of Materials Processing Technology. 1999, 92-93: 323-328
    [43] Rajurkar K. P., Wang Z. Y., Kuppattan A. Micro removal of ceramic material (Al2O3) in the precision ultrasonic machining. Precision Engineering.1999, 23(2): 73-78
    [44] Hu P., Zhang J. M., Pei Z. J. Modeling of material removal rate in rotary ultrasonic machining: designed experiments. Journal of Material Processing Technology. 2002, 129: 339-344
    [45]邓建新,曲宝键,郭玉和,等.导电Al2O3基陶瓷刀具材料的超声—放电复合加工技术研究.江苏陶瓷. 2002, 31: 1-5
    [46]秦勇,王霖,吴春丽,等.大理石的超声波加工实验研究.技术新工艺. 2001, 2: 17-19
    [47]王正君,钟伟弘,于思远,等.大理石超声波精雕系统.天津理工学院学报. 1998, 14 (4): 42-44
    [48]孔庆华,杨志强.超声波加工建筑玻璃小孔的实验研究.机械科学与技术. 1996, 25(2): 15-18
    [49]戴红娟. Nd2Fe2B烧结永磁体材料的超声加工机理.机械工程师. 2002, 8: 32-33
    [50]张辽远,史维明,薛航.超声复合加工玛瑙的实验研究.中国兵工论文集. 2000
    [51]蔡玉荣,周康.用作生物材料的纳米陶瓷.稀有金属快报. 2002, 2: 1-3
    [52]海野帮昭,西村一仁等.精密工学会志. 1986, 52: 107
    [53]李伯民,赵波.现代磨削技术.机械工业出版社,2003
    [54]赵波,焦锋,向道辉.浅谈磨削加工技术的发展趋势.机械工人:冷加工,2004. 9:13-15
    [55] Guzzo P. L. , Raslan A. A., De Mello J. D. B. Ultrasonic abrasion of quartz crystals. Wear. 2003, 255: 67-77
    [56]周忆,米林,廖强,梁德沛.基于超声研磨的超精密加工.航空精密制造技术. 2003, 39(1): 1-4
    [57]隈部淳一部,西尾彰文等.1989年度精机学会春季大会学术讲演论文集,1989: 907
    [58]鬼鞍宏,大西修等.超声波振动ガ小径穴の加工精度に及ぼす效果.精密工学会志,1996, 62(5)
    [59]辛志杰,武文革等.超声波振动珩磨振动系统实验研究.工具技术,1998
    [60] Y. Ichida, R. Sato, Y. Morimoto, K. Kobayashi. Material removal mechanisms in non-contact ultrasonic abrasive machining. Wear. 2005, 258: 107–114
    [61] A Cheng Wang, Biing Hwa Yan, Xiang Tai Li, Fuang Yuan Huang. Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining. International Journal of Machine Tools and Manufacture 2002, 42 (8): 915-923
    [62]王娜君,季远,朱波,杨晶明. PCD复合片超声振动研磨去除率的研究.机械工艺师. 2001, 4: 13-14
    [63]王娜君,季远,张德远.聚晶金刚石的超声振动研磨机理研究.工具技术. 2001, 35(12): 12-14
    [64]李新和,张祁莉,王龙.光纤连接器超声研磨及研磨液实验研究机械工程师2006, 2: 78-80
    [65]周忆,梁德沛.超声研磨硬脆材料的去除模型研究.中国机械工程. 2005, 16(8): 664-666
    [66] J A. Krumbans1.Generalized Continuum Field Representations for Lattice Vibrations. Pergamon Press. 1964,P627
    [67] E.Kroner.Elasticilv Theory of Materials with Long range Cohesive Forces.Int.J.Solid Structures.l967, 3(5): 731-742
    [68] I.A Kunin. The Theory Elastic Media with Microstructures and the theory of Dislocations.In:Mechanics of Generalized Continua.Springer·Verlag.1967.P32
    [69] D.G.B.Edelen. Protoelastic Bodies with Large Deformation. Arch Rat. Mech. Ana1. 1969, 34(4): 283-300
    [70] D. G. B. Edelen and Norman Laws.On The Thermodyllmuics of System with Nonlocality.Arch Rat Mech Ana1. 1971, 43(1): 24-35
    [71] A.C. Eringen. Theory of nonlocal elasticity and some applications. Res. Mech. 1984, 21: 313-342.
    [72] A. C. Eringen and D.G.B. Edelen.On nonlocal elasticity,lnt. J. Eng. Sci. 1972, 10(3): 233-248
    [73] A. C. Eringen.Memory Dependent Nonlocal Elastic Solids.Lett. App1. Eng Sci. 1974, 2: 145-159
    [74] A. C. Eringen. Theory of Nonlocal Thermoelasticity. 1nt. J. Eng Sci. 1974, 12(12): 1063-1077
    [75] A. C. Eringcn. On Nonloeal Plasticity. Int.J. Eng. Sci. 1981, 19(12): 1461-1474
    [76] A. C. Eringen. Nonlocal Continuum Mechanics and some Applications. In :NonlinearEquations of Physics and Mathematics(ed by A.O Barul), Reidel Publishing Company. 1978, P271
    [77] A. C. Eringen. Theory of Nonlocal Elasticity and some Applications. Res. Meeh. 1987, 27: 313
    [78] A. C. Eringen. Vistas of Nonlocal Continuum Physics. Int. J. Eng. Sci.1992, 30 (10): 1551-1565
    [79] A. C. Eringen., Kim,B.S. Stress concentration at the tip of a crack.Mech.Res.Commun. 1974, 1(4): 233-237
    [80] A. C. Eringen., Speziale,C.G., Kim, B.S.. Crack-tip problem in non-local elasticity. J.Solids Struct. 1977, 25(5): 339-355.
    [81] A. C. Eringen.. Line crack subjected to shear.Int.J.Fract. 1978, 14(4): 367-379.
    [82] A. C. Eringen.. Line crack subjected to anti-plane shear.Engng.Fract.Mech. 1979, 12(2): 211-219
    [83] J.R. Rice. Thermodynamics of the quasi-static growth of Griffith cracks.J. Mech. Phys. Solids. 1978, 26(2): 61-78.
    [84] Gurtin, M.E., Thermodynamics and the Griffith criterion for brittle fracture. Int.J. Solids Struct. 1979, 15(7): 553-560.
    [85] G. B. Edelen. Global Thermodynamics. Exterior Banch Forms and Gateaux DifierentiaEquations. In:Trends in Applications of Pure Mathematics to Mechanics(ed by G.Fiehera).Piton Publishing. l976 Pl
    [86] A. C. Eringen. Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves Int.J.Eng. Sci. 1972, 10(5): 425-435
    [87] A. C. Eringen.On Rayleigh Surface Waves with Small Wave Length. Lett Appl.Eng. Sci,Vol.I(1973).P11
    [88] A. C. Eringen.On Difierential Equations of Nonlocal Elasticity and Solutions of Screw Dislocatioas and Surfaces Waves. J Appl Phys.1983, 54: 4703
    [89] C. Atkinson. On Some Recent Crack Tip Stress Calculations ln Nonlocal Elasticity. Arch Mech. 1980, 32(22): 317-328
    [90] C. Atkinson. Crack Problems in Nonlocal Elasticitv. Arch. Mech. 1980, 32: 597
    [91] N Ari and A C Eringen. Nonlocal Stress Field at Grifith Crack. Crst Lattice Defect Amorph. Mat. 1983, l0: 33
    [92] A C Eringen and A. Suresh. Nonlocal Effects of Crack Curving. In:Proc.of the second lnt Svm. and 7th Canadian Fracture Conf. on Defects.Fracture and Fatigue(ed by G C Sih and J.W.Provan). Martinus NijhofPublishers. 1983, P233
    [93] A C Eringen. Nonlocal Stress Field of Dislocations and Crack.In:Modelling Problems in Crack Tip Meehanics(ed.by Jerzy T Pindera).Martinus NijhofPublishers. 1984, P113-130
    [94]程品三.脆性断裂的非局部力学理论.力学学报. 1992, 3: 329
    [95]王锐.非局部弹性理论的裂纹问题.中国科学(A辑).1989, 34: l056
    [96] Gao, J. An asymmetric theory of nonlocal elasticity - part2. Continuum field. Int.J.Solids Struct. 1999, 36(20): 2959-2971.
    [97] Castrenze Polizzotto. Nonlocal elasticity and related variational principles. International Journal of Solids and Structures. 2001, 38(42-43): 7359-7380
    [98] R.C. Picu. Non-Local Elasticity Kernels Extracted from Atomistic Simulations Mat. Res. Soc. Symp. Proc. 2002, 731:71-76
    [99] R.C. Picu. On the functional form of non-local elasticity kernels. Journal of theMechanics and Physics of Solids. 2002, 50(9): 1923-1939
    [100] A. Cemal Eringen. Nonlocal continuum mechanics based on distributions International Journal of Engineering Science. 2006, 44 (3-4): 141-147
    [101] Lazar M, Maugin G A and Aifantis E C. On a theory of nonlocal elasticity of bi-Helmholtz type and some applications Int. J. Solids Struct. 2006, 43(6): 1404–1421
    [102] A. C. Eringen and B S Kim. Stress Concentration at the Tip of Crack. Mech.Res Comm. 1974, 1(4): 233-237
    [103] A. C. Eringen. Plane waves in nonlocal micropolar elasticity. 1984, 22(8-10): 1113-1121
    [104] A. C. Eringen. Line Crack Subject to Shear. Int J Fracture. 1978, 14(1978). P367
    [105] A. C. Eringen. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics. 1983, 54(9): 4703-4710
    [106] Eftis J., Liebowitz H. On surface energy and on the continuum thermodynamics of brittle fracture. Engng. Fract. Mech. 1976, 8(3):459-485.
    [107] Zhang C., Karihaloo B.L. A thermodynamic framework of fracture mechanics. Engng. Fracture Mech. 1993, 46(6): 1023–1030.
    [108] Bolotin, V.V. Crack growth and fracture as instability phenomena. 8th International Conference on Fracture. ICF8; Kyiv; Ukraine. 1994, (8-14): 83-97
    [109] Ba?ant, Z.P. Stability of Structures. Oxford University Press, New York. 1991
    [110] Castrenze Polizzotto. Thermodynamics and continuum fracture mechanics for nonlocal-elastic plastic materials. European Journal of Mechanics A/Solids. 2002, 21(1): 85-103
    [111] L.B.IIcewicz. A Relationship Between Wave Dispersion And Fracture Strength For A Composite Material. Phd Dissertation. Oregon State University. 1984.
    [112] H. Demiray and A. C. Eringen. A Nonlocal Model for Plug Formation in Plates.Int J. Eng Sci. 1978, l6(5): 287-297
    [113] H. Demiray and A.C. Eringen.Impact of Nonlocal Thin Elastic Plates by a Cylindrical Projectile. Lnt. J. Eng. Sci. 1978, 16(11): 905-916
    [114] Z. P. Bnzant. Why Continuum Damage is Nonlocal: Justification by Quasiperiodic Microcrack Array. Meeh Res Communications. 1987, 14(5-6): 407-419
    [115] Z.P Bazant. Why Continuum Damage is Non local:Micromeehanics Argunaents,J Eng Mech. 1991, 117(5): 1070-1087
    [116] Z.P. Bazant. Nonlocnl Damage Theory Based on Micromechanics of Crack Interactions. J Eng. Mech. 1994, 120(3): 593-617
    [117] Cang-Leh Chou PhD. Wave effects of ultrasonic vibration on machining 1994工业工程专业
    [118] Artan R., Yelkenci T., Rectangular rigid stamp on a nolocal elastic half-plane. Int.J.Solids Struct. 1996, 33(24): 3577-3586
    [119] Zhen-Gong Zhou, Jie-Cai Han, and Shan-Yi Du. Investigation of a Griffith crack subjected to anti-plane shear by using the nonlocal theory. Int.J.Solids Struct. 1999, 39(1): 63-76
    [120] Christian F. Niordson, Viggo Tvergaard. Nonlocal plasticity effects on fibre debonding in a whisker-reinforced metal. European Journal of Mechanics A/Solids. 2002, 21(2): 239-248
    [121] Dayal, Kaushik. Nonlocal microstructure mechanics of active materials. Dissertation (Ph.D.), California Institute of Technology, 2007.
    [122] J.J. Gracio, F. Barlat, E. Rauch, J.W. Yoon, R.C. Picu. A Review of the Relationship Between Microstructural Features and the Stress-Strain Behavior of Metals Mat.-wiss. u. Werkstofftech. 2005, 36(10): 572-577
    [123] R. Desmorat, F. Gatuingt, F. Ragueneau. Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials. Engineering Fracture Mechanics. 2007, 74(10): 1539-1560
    [124]戴天民.广义连续统场论的简略综述评论.力学进展. 1983, 13: 432
    [125]虞吉林,考虑微结构的固体力学的进展和若干应用.力学进展,1985,1: 82
    [126]王锐.非局部弹性体中的裂纹问题.中国科学: A辑, 1989
    [127]高健.非局部非对称拟连续统理论,固体力学学报,Vo1.6(1993),PI15
    [128]高健,陈至达.非对称的非局部塑性理论,力学学报,Vol 26(1994),P570
    [129]刘振国,王铎.关于弹性圆筒中扭转波传播的非局部弹性理论.科学出版社. 1995,P148
    [130]高健.戴天民.具有非局部体力矩的非局部弹性理论.力学学报. 1990, 4: P446
    [131]高健,陈至达.非局部非对称弹性固体理论.应用数学和力学. 1992, 9: 765-774
    [132]黄再兴.关于非局部场论的两点注记.固体力学学报. 1997, 2:158-162
    [133]黄再兴,非局部场论的几个基本问题及其在断裂力学中的应用.[博士论文]南京航空航天大学. 1995
    [134] Huang Zaixing, FanWeixun and HuangWeiyang. New points of view on the nonlocal field theory and their applications to the fracture mechanics (I)—fundamental theory. Applied Mathematics And Mechanics. 1997, 18(1): 45-54
    [135]黄再兴.关于线性非局部弹性理论的应力边界条件,应用力学学报. 1997, 3: 79-83
    [136]王忠昶,栾茂田,杨庆.基于不同权函数的非局部理论对比分析.西安交通大学学报. 2006, 40(11): 1348-1356
    [137]王晓林,程靳.铜在超高频振动下的力学行为.锻压技术, 1995, 4: 38-41.
    [138]郑金鑫,胡浩,程靳.超高频振动下材料本构关系探析.哈尔滨工业大学学报. 1997, 29(1): 6-9.
    [139]孙飞飞,沈祖炎.混凝土单轴受拉的非局部本构模型.力学季刊. 2006, 27(1): 1-6.
    [140]秦军,刘传绍,赵波,王应彪.超声波振动下脆性材料单轴拉伸试验装置的设计.机械制造. 2007, 2: 54-57
    [141]赵明利.工程陶瓷超精密平板研抛技术研究. [硕士论文].河南:河南理工大学,2007
    [142]雷勇军,赵雪川,周建平,非局部弹性杆固有频率求解的传递函数法,振动与冲击. 2006, 25(6): 104-107
    [143]郑长良.非局部弹性直杆振动特征及Eringen常数的一个上限.力学学报. 2005, 37(6): 796-798
    [144]赵波.硬脆材料超声珩磨系统及延性切削特性研究[博士论文].上海:上海交通大学, 1999
    [145] BoZhao,Chuanshao Liu,et al., Surface characteristics in the ultrasonic ductile honing of ZrO2 ceramics using coarse grits,Journal of Materials Processing Technology. 2002, 123(1): 54-60
    [146] Jiao F, Zhao B et al. Research on Ultrasonic Honing Performance of ZrO2 EngineeringCeramics Using Diamond Oil-stone with Coarse Grains. Key Engineering Materials. 2004, 259-260: 297-301
    [147] Zhao B., Zhu X. S., Liu C S and Jiao F. Research on Relationships Between Surface Fracture States and Surface Roughness Dispersion Range in Ultrasonic Grinding ZrO2. Key Engineering Materials. 2004, 259-260: 239-243
    [148] Zhao B.,Yan Y.Y.,Wu Y.,Jiao F,Liu C.S. Study on Motion Model of Abrasive Particle and Surface Formation Mechanics under Two Dimensional Ultrasonic Grinding. Key Engineering Materials. 2005, 315-316: 314-318
    [149] F. Jiao, B.Zhao, X.S.Zhu and Q.T.Fan. Ultrasonic Dressing of Grinding Wheel and Its Influence on Grinding Quality. Key Engineering Materials. 2006, 304-305: 62-65
    [150] Yanyan Yan,Bo Zhao,Yan Wu,Chuanshao Liu,Xunsheng Zhu,Study on Material Removal Mechanism of Fine-crystalline ZrO2 Ceramics under Two Dimensional Ultrasonic Grinding, Materials Science Forum, 2006, 532-533: 532-535
    [151] IIcewicz, Larry Bert. A Relationship Between Wave Dispersion And Fracture Strength For A Composite Material. PhD Thesis, 1984
    [152]杨述武.普通物理试验.北京:高等教育出版社, 1993
    [153]刘贵民.无损检测技术.国防工业出版社, 2006
    [154]贺永,董海,马勇等.工程陶瓷磨削力的研究现状与进展.金刚石与磨料磨具工程. 2002, 127(1): 40-44
    [155] G.Werner. Influence of work material on grinding forces. Annals of the CIRP. 1978, 27(1) Kun Li, T.Warren Liao. Modeling of ceramic grinding processes-PartⅠ: number of cutting points and grinding forces per grit. Journal of Materials Processing Technology, 1997, 65 (1-3): 1-10
    [156]李力钧,付杰才.磨削力的数学模型的研究.湖南大学学报. 1979, 03
    [157]李伯民,赵波.现代磨削技术.北京:机械工业出版社, 2003
    [158] M. Xiao, K. Sato, S. Karube, T. Soutome. The effect of tool nose radius in ultrasonic vibration cutting of hard metal. International Journal of Machine Tools and Manufacture. 2003, 43(13) 1375-1382
    [159] J.-D. Kim, I.-H. Choi. Micro surface phenomenon of ductile cutting in the ultrasonicvibration cutting of optical plastics. Journal of Materials Processing Technology. 1997, 68(1): 89-98
    [160] M. Xiao, S. Karube, T. Soutome, K. Sato. Analysis of chatter suppression in vibration cutting. International Journal of Machine Tools and Manufacture. 2002, 42 (15): 1677-1685
    [161] M. Xiao, Q.M. Wang, K. Sato, S. Karube, T. Soutome, H. Xu. The effect of tool geometry on regenerative stability in ultrasonic vibration cutting. International Journal of Machine Tools and Manufacture. 2006, 46(5): 492-499
    [162] J. Kumabe, K. Fuchizawa, T. Soutome, Y. Nishimoto et al. Ultrasonic superposition vibration cutting of ceramics. Precision Engineering. 1989, 11(2): 71-77
    [163] J.-D. Kim, E.-S. Lee, A study of the ultrasonic vibration cutting of carbon fiber reinforced plastics. Journal of Materials Processing Technology. 1996, 12(2): 78–86.
    [164]于爱兵,徐燕申,林彬,王龙山.工程陶瓷磨削裂纹形成过程研究.天津大学学报, 1999, 2: 177-180
    [165] T. Kawkubo, N. Okable. Static and cyclic fatigue behaviour in ceramics. Material component engineering publishes Ltd. 1990
    [166] Qiang Liu, Xun Chen, Yan Wang and Nabil Gindy. Empirical modelling of grinding force based on multivariate analysis. Journal of Materials Processing Technology. 2008, 203 (1-3): 420-430
    [167] Yung-Li Lee, Jwo Pan, Richard Hathaway, Mark Barkey. Fatigue Testing and Analysis : Theory and Practice. Butterworth-Heinemann. 2005
    [168] Lawn, Brian, Wilshaw, Rodney. Review indentation fracture: principles and applications. Journal of materials science. 1975, 10(6): 1049-1081
    [169]于爱兵、徐燕申、林彬.应用压痕断裂力学分析陶瓷材料的磨削加工.硅酸盐通报, 2002, 21(1): 58-61
    [170] Marshall D. B., Lawn B. R., Evans A. G. Elastic/plastic indentation damage in ceramics: the lateral crack system. J. Am. Ceram.Soc. 1982, 65(11): 561-566:
    [171]闫洪,窦明民,李和平.二氧化锆陶瓷的相变增韧机理和应用.陶瓷学报. 2000,21(1): 46-50
    [172]马尔金著,蔡光起,巩亚东,宋贵亮译.磨削技术理论与应用.沈阳:东北大学出版社. 2002
    [173]任敬心,康仁科,史兴宽.难加工材料的磨削.北京:国防工业出版社. 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700